COMPARISON OF THE CONTOUR INFLECTION POINTS SELECTION METHODS FOR VIDEO SURVEILLANCE SYSTEMS

Д. І. Загородня

Abstract


Comparison of the contour inflection point selection of the: interpolation and differential methods and the method based on wavelet analysis of the function curvature were performed in the article according to the following criteria: probability of the correct detection, probability of the false detection and an error in coordinate evaluation for systems of video vision that are based on the model task results. Work results of the methods were analyzed and graphically presented. It was demonstrated that for simple geometrical figures the interpolation method has low accuracy (it displaces inflection points). And differential method in its turn possesses the best accuracy indices though it selects excessive inflection points (it has low obstacle resistance). And the method based on wavelet analysis of the function curvature shows best results in noisy conditions.

Keywords


video surveillance systems, image contour, inflection points, characteristic point selection methods (differential, interpolation, wavelet analysis of the function curvature

References


Al Najjar, M., Ghantous, M., Bayoumi, M. Video Surveillance for Sensor Platforms: Algorithms and Architectures. Lecture Notes in Electrical Eng., Springer, Book 114, 2013. 202 p.

Caputo, A. C. Digital Video Surveillance and Security. Butterworth-Heinemann-Second edition, 2014. 440 p.

Furman, Ja. A., Kreveckij, A. V., Rozhencov, A. A., Hafizov, R. G., Egoshina, I. L., Leuhin, A. N. Vvedenie v konturnyj analiz: prilozhenija k obrabotke izobrazhenij i signalov [Introduction to contour analysis: applications for image and signal processing] 2 nd ed., Moscow, FIZMATLIT Publ., 2003. 592 p.

Polyakova, M., Krylov, V., Classification of methods of the signal semantic wavelet transform for image contour segmentation. International Journal of Computing, 2008, vol. 7, is. 1, pp. 51-57.

Zahorodnia, D., Kovalok, K., Sachenko, A., Krylov, V., Nychyporuk, S. Contour Segmentation Method in Video Surveillance Systems. Proceedings of the International Conference “Modern Problems of Radio Engineering, Telecommunications and Computer Science”, Lviv-Slavsko (Ukraine), 2014, pp. 405.

Duda, R., Hart, P. Raspoznavanie obrazov i analiz scen [Pattern Classification and Scene Analysis]. Moscow, Mir Publ., 1976. 511 p.

Zahorodnya, D. I. Analiz interpolyatsiynoho metodu vydilennya kharakternykh tochok konturu [Analysis of interpolation method for contour’s inflection point detection]. Naukovy Visnyk Chernivetskogo Natsionalnogo Universitetu. Series: Computer systems and components, vol. 6, iss. 2, Chernivtsi, ChNU Publ., 2015, pp. 88-92.

Zahorodnya, D. I., Dorosh, V. I., Dobrovol's'ka, N. S., Rymar, O. L. Doslidzhennya dyferentsial'noho metodu vydilennya kharakternykh tochok konturu oblych [Investigation of differential method detecting feature points on face contour]. International scientific-technical magazine «Measuring and Computing Devices in technological processes». Khmelnitsky, 2014, no. 4 (49), pp. 162 – 166.

Zagorodnjaja, D. I. Metod identifikacii lic po harakternym tochkam kontura [Method of face identification based on contour inflection points]. Transactions of Brest State Technical Univ., Series: physics, math. and informatics, 2015, no. 5, pp. 30 – 33.

Paliy, I., Dovgan, V., Boumbarov, O., Panev, S., Sachenko, A., Kurylyak, Y,. Zagorodnya. D. Fast and Robust Face Detection and Tracking Framework. Proc. of the IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2011). – Prague (Czech Republic), 2011, pp. 430-433.

Krylov, V. N., Maksimov, M. V. Vtorichnye preobrazovateli signalov izobrazhenij [Secondary converters for image signals]. Odessa, Astroprint Publ., 1997. 176 p.

Rodehorst, V., Koschan, A. Comparison and Evaluation of Feature Point Detectors. In Proceedings of 5th International Symposium Turkish-German Joint Geodetic Days "Geodesy and Geoinformation in the Service of our Daily Life", Tech. Univ. of Berlin, Germany, March 2006, pp. 8.

Tuytelaars, T., Mikolajczyk, K. Local Invariant Feature Detectors: A Survey. Found. and Trends in Computer Graphics and Vision, 2008, vol. 3, no. 3, pp. 177-280.

Schimid, C., Mohr, R., Bauckhane, C. Evaluation of Interest Point Detectors. International Journal of Computer Vision, 2nd ed., 2000, vol. 37, pp. 151-172




DOI: https://doi.org/10.32620/reks.2016.3.07

Refbacks

  • There are currently no refbacks.