Estimation of radio pulse parameters with linear frequency modulation

Volodymyr Pavlikov, Maksym Peretiatko, Volodymyr Trofymenko, Denys Kolesnikov

Abstract


The subject of this article is the process of estimating the parameters of a pulse signal with linear frequency modulation (LFM) used in airborne radar systems, particularly in synthetic aperture radars (SAR). The goal of this study is to synthesize algorithms for the optimal estimation of the key parameters of an LFM signal (i.e., carrier frequency, modulation frequency change rate, pulse length, and radio pulse envelope) and to develop a block diagram of a radar receiver that implements these algorithms. The tasks to be solved are as follows: build a mathematical model of a signal with linear frequency modulation emitted by a radar, an observation equation, and a likelihood functional; synthesize algorithms for estimating the parameters of an LFM signal using the maximum likelihood method; and develop a block diagram of a receiver based on the synthesized algorithms. The solutions to these tasks are based on the statistical theory of radio engineering systems and computer simulation. The following results were obtained: 1) algorithms for estimating the carrier frequency, frequency change rate, pulse length, and radio pulse envelope were synthesized; 2) simulations showed high noise robustness of the algorithms (up to a signal-to-noise ratio of –30 dB); 3) a block diagram of the radar was designed, which implements the synthesized algorithms and refines the estimated parameters in feedback. Conclusions. The scientific novelty of the obtained results is as follows: algorithms for estimating the parameters of both the point (carrier frequency, modulation frequency change rate, pulse length) and time characteristics (radio pulse envelope) of pulse LFM signals have been obtained using the maximum likelihood method. For the first time, it has been shown that estimating the pulse width requires solving a transcendental equation, and estimating the envelope requires smoothing in a sliding window. The obtained results expand the application of the maximum likelihood method in signal parameter estimation theory. The theory of phantomization of radio images has been further developed in terms of designing the receiving paths of phantomization radars.

Keywords


pulse parameters; linear frequency modulation; likelihood method; phantomization radar; synthetic aperture radar

Full Text:

PDF

References


Pavlikov, V., Zhyla, S., Pozdniakov, P., Kolesnikov, D., Cherepnin, H., Shmatko, O., Odokiienko, O., Malashta, P., & Tserne, E. Foundations of Radar Synthesis Theory of Phantom Objects Formation in SAR Images. Radioelectronic and Computer Systems, 2024, no. 3, pp. 123-140. DOI: 10.32620/reks.2024.4.11.

Pavlikov, V. V., Pozdniakov, P. V., Tserne, E. O., Kolesnikov, D. V., Peretiatko, M. S., & Malashta, P. P. Teoriya fantomizatsiyi radiozobrazhen’ RSA: bazovi vidomosti ta obgruntuvannya rozmiriv dilyanky fantomizatsiyi [Theory of phantomization of SAR radio images: basic information and justification of phantomization area sizes]. Aviatsiyno-kosmichna tekhnika i tekhnolohiya – Aerospace technic and technology, 2024, no. 5, pp. 72-84. DOI: 10.32620/aktt.2024.5.08. (In Ukrainian).

Natale, A., Berardino, P., Esposito, C., & Pema, P. Airborne SAR for high resolution imaging. Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, IEEE, 2017, pp. 1-3. DOI: 10.1109/JURSE.2017.7924626.

Ferdowsi, B., Bhanu, M., Rao, C., Stieglitz, A., Loganathan, D., & Schubert, C. NASA-ISRO Synthetic Aperture Radar (NISAR): The Last Steps to Launch. Proceedings of the 2024 IEEE Aerospace Conference, Big Sky, MT, USA, IEEE, 2024, pp. 1-10. DOI: 10.1109/AERO58975.2024.10520949.

Chekka, A. B., & Aggala, N. J. High frequency Chirp signal generator using multi DDS approach on FPGA. Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, IEEE, 2021, pp. 137-142. DOI: 10.1109/ICOEI51242.2021.9453012.

IEEE Std 1900.1-2019. IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management – Redline. Piscataway, NJ, USA, IEEE, 2019, 144 p.

Souli, N., Stavrinides, S. G., Kardaras, P., Picos, R., Karatzia, M., & Kolios, P. Performance Evaluation of a Prototype UAV-Based Secure Communication System Employing ROS and Chaotic Communications. Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania – Crete, Greece, IEEE, 2024, pp. 1034-1041. DOI: 10.1109/ICUAS60882.2024.10556964.

Šimon, O., Veselý, J., & Gabard, A. Single Channel Degarbling of SIF/IFF Pulses Using Spectral Inverse Filtering. Proceedings of the 2023 24th International Radar Symposium (IRS), Berlin, Germany, IEEE, 2023, pp. 1-8. DOI: 10.23919/IRS57608.2023.10172453.

Kemp, D. A., King, S. C., Horne, N. C., Larsen, R. A., Garfield, I. R., & Santos. J. 300–900 MHz Midband Array Design for the Lunar Farside Technosignatures and Transients Telescope. Proceedings of the 2025 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, IEEE, 2025, pp. 48-48. DOI: 10.23919/USNC-URSINRSM66067.2025.10906969.

Van Trees, H. L. Detection, Estimation and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. John Wiley & Sons Inc, 2001. 697 p.

Cramér, H. Mathematical Methods of Statistics. Princeton University Press, 1946. pp. 367-369.

Skolnik, M. I. Radar Handbook. 3rd ed. McGraw-Hill, 2008. 1328 p.

Stoica, P., & Nehorai, A. On the concentrated stochastic likelihood function in array signal processing. Circuits Systems and Signal Process, 1995, no. 14, pp. 669-674. DOI: 10.1007/BF01213963.

Volosyuk, V. K., Zhyla, S. S., Antonov, M. O., & Khaleev, O. A. Optimal Acquisition Mode and Signal Processing Algorithm in Synthetic Aperture Radar. Proceedings of the 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, IEEE, 2017, pp. 511–516. DOI: 10.1109/ELNANO.2017.7939804.

Xia, M., Gong, W., & Yang, L. A. Novel Waveform Optimization Method for Orthogonal-Frequency Multiple-Input Multiple-Output Radar Based on Dual-Channel Neural Networks. Sensors, 2024, vol. 24, no. 17, article no. 5471. DOI: 10.3390/s24175471.

Ahn, J., Lee, D.-H., Lee, S., & Kim, W. Frequency Shift Keying-Based Long-Range Underwater Communication for Consecutive Channel Estimation and Compensation Using Chirp Waveform Symbol Signals. Journal of Marine Science and Engineering, 2023, vol. 11, no. 9, article no. 1637. DOI: 10.3390/jmse11091637.

Serbes, A. On the Estimation of LFM Signal Parameters: Analytical Formulation. IEEE Transactions on Aerospace and Electronic Systems, 2018, vol. 54, no. 2, pp. 848-860. DOI: 10.1109/TAES.2017.2767978.

Aldimashki, O., & Serbes, A. LFM signal parameter estimation in the fractional Fourier domains: Analytical models and a high-performance algorithm. Signal Processing, 2024, vol. 214, article no. 109224. DOI: 10.1016/j.sigpro.2023.109224.

Zhai, G., Zhou, J., Yu, K., & Li, J. Chirp Rate Estimation of LFM Signals Based on Second-Order Synchrosqueezing Transform. Electronics, 2023, vol. 12, no. 24, article no. 4938. DOI: 10.3390/electronics12244938.

Wu, A. Y., Shi, X. Y., Sun, Y., Jiang, X., Qiang, S. Z., Han, P. Y., Chen, Y. J., & Zhang, Z. C. A Computationally Efficient Optimal Wigner Distribution in LCT Domains for Detecting Noisy LFM Signals. Mathematical Problems in Engineering, 2022, article no. 2036285. DOI: 10.1155/2022/2036285.

He, Y., & Zhang, Z. Symplectic Wigner Distribution in the Linear Canonical Transform Domain: Theory and Application. IEEE Transactions on Signal Processing, 2025, vol. 73, pp. 3688-3706. DOI: 10.1109/TSP.2025.3572739.

Shuo, M., Chen, M., Cheng, W., & Xiang, Y. A Method Based on Random Demodulator and Waveform Matching Dictionary to Estimate LFM Signal Parameter. Journal of Sensors, 2023, article no. 2499336. DOI: 10.1155/2023/2499336.

Meng, S., Meng, C., & Wang, C. Estimation of LFM signal parameters using RD compressed sampling and the DFRFT dictionary. EURASIP Journal on Advances in Signal Processing, 2023, article no. 93. DOI: 10.1186/s13634-023-01057-4.

Fei, S., Yan, M., Zhou, F., Wang, Y., Zhang, P., Wang, J., & Wang, W. A Parameter Estimation Method for Linear Frequency Modulation Signals Based on High-Resolution Spectral Line Representation. Electronics, 2025, vol. 14, no. 6, article no. 1121. DOI: 10.3390/electronics14061121.

Su, H., Bao, Q., & Chen, Z. Parameter Estimation Processor for Chirp Signals Based on a Complex-Valued Deep Neural Network. IEEE Access, 2019, vol. 7, pp. 176278-176290. DOI: 10.1109/ACCESS.2019.2957863.




DOI: https://doi.org/10.32620/reks.2025.4.17

Refbacks

  • There are currently no refbacks.