Method of UAV-based inspection of photovoltaic modules using thermal and RGB data fusion
Abstract
Keywords
Full Text:
PDFReferences
Tsanakas, J., Ha, L., & Buerhop, C. Faults and infrared thermographic diagnosis in operating c‐Si photovoltaic modules: a review of research and future challenges. Renewable and Sustainable Energy Reviews, 2016, vol. 62, pp. 695–709. DOI: 10.1016/j.rser.2016.04.079.
Grimaccia, F., Leva, S., Dolara, A., & Aghaei, M. Survey on PV modules common faults after an O&M flight extensive campaign over different plants in Italy. IEEE Journal of Photovoltaics, 2017, vol. 7, no. 3, pp. 810–816. DOI: 10.1109/JPHOTOV.2017.2674977.
Kandeal, A., Elkadeem, M., Thakur, A., Abdelaziz, G., Sathyamurthy, R., Kabeel, A., Yang, N., & Sharshir, S. Infrared thermography-based condition monitoring of solar photovoltaic systems: a mini review of recent advances. Solar Energy, 2021, vol. 223, pp. 33–43. DOI: 10.1016/j.solener.2021.05.032.
Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Pérez, O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants. Renewable and Sustainable Energy Reviews, 2018, vol. 93, pp. 566–579. DOI: 10.1016/j.rser.2018.05.027.
Zefri, Y., ElKettani, A., Sebari, I., & Ait Lamallam, S. Thermal infrared and visual inspection of photovoltaic installations by UAV photogrammetry—application case: Morocco. Drones, 2018, vol. 2, no. 4, p. 41. DOI: 10.3390/drones2040041.
Melnychenko, O., Scislo, L., Savenko, O., Sachenko, A., & Radiuk, P. Intelligent integrated system for fruit detection using multi-UAV imaging and deep learning. Sensors, 2024, vol. 24, no. 6, p. 1913. DOI: 10.3390/s24061913.
Michail, A., Livera, A., Tziolis, G., Georghiou, G., Panayiotou, C., Loutsiou, A., & Lilli, C. A comprehensive review of unmanned aerial vehicle-based approaches to support photovoltaic plant diagnosis. Heliyon, 2024, vol. 10, no. 1, p. e023983. DOI: 10.1016/j.heliyon.2024.e23983.
Lee, D., & Park, J. Developing inspection methodology of solar energy plants by thermal infrared sensor on board unmanned aerial vehicles. Energies, 2019, vol. 12, no. 15, article no. 2928. DOI: 10.3390/en12152928.
Aghaei, M., Dolara, A., Leva, S., & Grimaccia, F. Image resolution and defects detection in PV inspection by unmanned technologies. In: Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA, IEEE, 2016, pp. 1–5. DOI: 10.1109/PESGM.2016.7741605.
Buerhop-Lutz, C., Bommes, L., Schlipf, J., Pickel, T., Fladung, A., & Peters, I. Infrared imaging of photovoltaic modules: A review of the state of the art and future challenges facing gigawatt-scale PV power stations. Progress in Energy, 2022, vol. 4, no. 4, article no. 042010. DOI: 10.1088/2516-1083/ac890b.
Phoolwani, U., Sharma, T., Singh, A., & Gawre, S. IoT based solar panel analysis using thermal imaging. In: Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS). Bhopal, India, IEEE, 2020, pp. 1–6. DOI: 10.1109/SCEECS48394.2020.114.
Lysyi, A., Sachenko, A., Radiuk, P., Lysyi, M., Melnychenko, O., Ishchuk, O., & Savenko, O. Enhanced fire hazard detection in solar power plants: An integrated UAV, AI, and SCADA-based approach. Radioelectronic and Computer Systems, 2025, vol, 2025, no. 2, pp. 99–117. DOI: 10.32620/reks.2025.2.06.
Morando, L., Recchiuto, C., Calla, J., Scuteri, P., & Sgorbissa, A. Thermal and visual tracking of photovoltaic plants for autonomous UAV inspection. Drones, 2022, vol. 6, no. 11, article no. 347. DOI: 10.3390/drones6110347.
Svystun, S., Scislo, L., Pawlik, M., Melnychenko, O., Radiuk, P., Savenko, O., & Sachenko, A. DyTAM: Accelerating wind turbine inspections with dynamic UAV trajectory adaptation. Energies, 2025, vol. 18, no. 7, article no. 1823. DOI: 10.3390/en18071823.
Vlaminck, M., Heidbuchel, R., Philips, W., & Luong, H. Region-based CNN for anomaly detection in PV power plants using aerial imagery. Sensors, 2022, vol. 22, no. 3, article no. 1244. DOI: 10.3390/s22031244.
Di Tommaso, A., Genduso, F., Miceli, R., & Galluzzo, G. A multi-stage model based on YOLOv3 for defect detection in PV panels using IR and visible imaging by UAV. Renewable Energy, 2022, vol. 193, pp. 941–962. DOI: 10.1016/j.renene.2022.04.046.
Su, Y., Tao, F., Jin, J., & Zhang, C. Automated overheated region object detection of photovoltaic module with thermography image. IEEE Journal of Photovoltaics, 2021, vol. 11, no. 2, pp. 535–544. DOI: 10.1109/JPHOTOV.2020.3045680.
Duranay, Z. B. Fault detection in solar energy systems: a deep learning perspective. Electronics, 2023, vol. 12, no. 21, article no. 4397. DOI: 10.3390/electronics12214397.
Meng, S., Yue, Y., & Xu, T. Enhanced YOLOv11 framework for accurate multi-fault detection in UAV photovoltaic inspection. Sensors, 2025, vol. 25, no. 17, article no. 5311. DOI: 10.3390/s25175311.
Tan, M., Pang, R., & Le, Q. EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, IEEE, 2020, pp. 10778–10787. DOI: 10.1109/CVPR42600.2020.01079.
Akram, M., Li, G., Jin, Y., Chen, X., Zhu, H., Ahmad, A., & Riaz, F. Automatic detection of photovoltaic module defects in infrared images with deep learning. Solar Energy, 2020, vol. 198, pp. 175–186. DOI: 10.1016/j.solener.2020.01.055.
Zefri, Y., Sebari, I., Hajji, H., & Aniba, G. Developing a deep learning-based layer-3 solution for thermal infrared large-scale photovoltaic module inspection from orthorectified big UAV imagery data. International Journal of Applied Earth Observation and Geoinformation, 2022, vol. 106, article no. 102652. DOI: 10.1016/j.jag.2021.102652.
Jia, Y., Chen, G., & Zhao, L. Defect detection of photovoltaic modules based on improved VarifocalNet. Scientific Reports, 2024, vol. 14, article no. 15170. DOI: 10.1038/s41598-024-66234-3.
Wang, B., Chen, Q., Wang, M., Chen, Y., Zhang, Z., Liu, X., Gao, W., Zhang, Y., & Zhang, H. PVF-10: a high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification. Applied Energy, 2024, vol. 376, article no. 124187. DOI: 10.1016/j.apenergy.2024.124187.
Alfaro-Mejía, E., Loaiza-Correa, H., Franco-Mejía, E., Restrepo-Girón, A., & Nope-Rodríguez, S. Dataset for recognition of snail trails and hot spot failures in monocrystalline Si solar panels. Data in Brief, 2019, vol. 26, article no. 104441. DOI: 10.1016/j.dib.2019.104441.
Qureshi, U., Rashid, A., Altini, N., Bevilacqua, V., & La Scala, M. Explainable intelligent inspection of solar photovoltaic systems with deep transfer learning: considering warmer weather effects using aerial radiometric infrared thermography. Electronics, 2025, vol. 14, no. 4, article no. 755. DOI: 10.3390/electronics14040755.
Oulefki, A., Agaian, S., El Afou, Y., Djahel, S., Zenkouar, K., & Taleb-Ahmed, A. Detection and analysis of deteriorated areas in solar PV modules using unsupervised sensing algorithms and 3D augmented reality. Heliyon, 2024, vol. 10, no. 6, article no. e27973. DOI: 10.1016/j.heliyon.2024.e27973.
Liao, K-C., & Lu, J-H. Using UAV to detect solar module fault conditions of a solar power farm with IR and visual image analysis. Applied Sciences, 2021, vol. 11, no. 4, article no. 1835. DOI: 10.3390/app11041835.
Svystun, S., Melnychenko, O., Radiuk, P., Savenko, O., Sachenko, A., & Lysyi, A. Thermal and RGB images work better together in wind turbine damage detection. International Journal of Computing, 2024, vol. 23, no. 4, pp. 526–535. DOI: 10.47839/ijc.23.4.3752.
Rohith, G., Rajalakshmi, R., Manish, D., & Narasimhan, R. Fusion-Solar-Net for solar panel fault detection. Results in Engineering, 2025, vol. 27, article no. 106513. DOI: 10.1016/j.rineng.2025.106513.
Lai, Y.-S., Hsieh, C.-C., Liao, T.-W., Huang, C.-Y., Yeh, C.-H., & Chen, W.-H. Deep learning-based automatic defect detection of photovoltaic modules in infrared, electroluminescence, and red–green–blue images. Energy Conversion and Management, 2025, vol. 332, article no. 119783. DOI: 10.1016/j.enconman.2025.119783.
Niccolai, A., Grimaccia, F., & Leva, S. Advanced asset management tools in photovoltaic plant monitoring: UAV-based digital mapping. Energies, 2019, vol. 12, no. 24, article no. 4736. DOI: 10.3390/en12244736.
Bommes, L., Pickel, T., Buerhop-Lutz, C., Hauch, J., Brabec, C., & Peters, I. Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Progress in Photovoltaics: Research and Applications, 2021, vol. 29, no. 12, pp. 1236–1251. DOI: 10.1002/pip.3448.
Kolahi, M., Esmailifar, S. M., Moradi Sizkouhi, A. M., & Aghaei, M. Digital-PV: a digital twin-based platform for autonomous aerial monitoring of large-scale photovoltaic power plants. Energy Conversion and Management, 2024, vol. 321, article no. 118963. DOI: 10.1016/j.enconman.2024.118963.
Kishor, I., Mamodiya, U., Patil, V., Naik, N., Kumar, S., & Yadav, R. AI-integrated autonomous robotics for solar panel cleaning and predictive maintenance using drone and ground-based systems. Scientific Reports, 2025, vol. 15, article no. 32187. DOI: 10.1038/s41598-025-17313-6.
DJI. Matrice 300 RTK [Computer program], 2020. Available at: https://www.dji.com/global/support/product/matrice-300 (accessed 3 September 2025).
DJI. Zenmuse H20T [Computer program], 2020. Available at: https://enterprise.dji.com/zenmuse-h20-series (accessed 1 September 2025).
NVIDIA Corporation. Jetson AGX Orin 32GB Module [Computer program], 2022. Available at: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/ (accessed 1 September 2025).
Canonical Ltd. Ubuntu [Computer program]. Version 20.04.6 LTS (Focal Fossa), 2022. Available at: https://releases.ubuntu.com/focal/ (accessed 4 September 2025).
Open Robotics. ROS Noetic Ninjemys [Computer program], 2020. Available at: https://www.openrobotics.org/ (accessed 3 September 2025).
DJI. DJI Onboard SDK [Computer program]. Version 4.1.0, 2021. Available at: https://github.com/dji-sdk/Onboard-SDK (accessed 30 September 2025).
DJI. DJI Payload SDK [Computer program]. Version 3.12.0, 2025. Available at: https://developer.dji.com/payload-sdk/ (accessed 3 September 2025).
Python Software Foundation. Python 3 Programming Language [Computer program]. Version 3.12.0, 2023. Available at: https://www.python.org/ (accessed 22 September 2025).
OpenCV Development Team. OpenCV [Computer program]. Version 4.9.0, 2023. Available at: https://opencv.org/ (accessed 30 September 2025).
NumPy Developers. NumPy [Computer program]. Version 2.3.0, 2025. Available at: https://numpy.org/ (accessed 2 September 2025).
PyTorch Foundation. PyTorch [Computer program]. Version 2.0, 2023. Available at: https://pytorch.org/ (accessed 1 September 2025).
Ultralytics. YOLOv11m-seg Architecture [Computer program], 2024. Available at: https://docs.ultralytics.com/models/yolo11/ (accessed 31 September 2025).
ZeroMQ Project. ZeroMQ [Computer program]. Version 4.3.5, 2023. Available at: https://zeromq.org/ (accessed 1 September 2025).
Microsoft Corporation. Microsoft Azure Cloud Platform [Computer program], 2010. Available at: https://azure.microsoft.com/ (accessed 1 September 2025).
ZigBee Alliance. ZigBee Specification [Standard]. Document No. 053474r20, 2005. Available at: https://zigbeealliance.org/ (accessed 3 September 2025).
Rainio, O., Teuho, J., & Klén, R. Evaluation metrics and statistical tests for machine learning. Scientific Reports, 2024, vol. 14, no. 1, article no. 6086. DOI: 10.1038/s41598-024-56706-x.
DOI: https://doi.org/10.32620/reks.2025.4.13
Refbacks
- There are currently no refbacks.
