Explainable artificial intelligence for multimodal sentiment analysis in revitalization project management
Abstract
Keywords
Full Text:
PDFReferences
Yao, S., & Wang L. Difficulties and Challenges Faced by the Implementation of China’s Rural Revitalization Strategy. Frontiers in Sustainable Development, 2023 vol. 3, no. 2, article no. 3768. DOI: 10.54691/fsd.v3i2.3768.
Guo, B., Yuan L., & Lu M. Analysis of Influencing Factors of Farmers’ Homestead Revitalization Intention from the Perspective of Social Capital. Land, 2023, vol. 12, no. 4, article no. 812. DOI: 10.3390/land12040812.
Jin, X., Chin, T., Yu, J., Zhang, Y., & Shi, Y. How Government’s Policy Implementation Methods Influence Urban Villager. Acceptance of Urban Revitalization Programs: Evidence from China. Land, 2020, vol. 9, no. 3, article no. 77. DOI: 10.3390/land9030077.
Chen, X., Xie, H., Tao, X., Wang, F. L., Leng, M., & Lei, B. Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics. Artificial Intelligence Review, 2024, vol. 57, article no. 91. DOI: 10.1007/s10462-024-10712-7.
Sulubacak, U., Caglayan, O., Gronroos, S., Rouhe, A., Elliott, D., Specia, L., & Tiedemann, J. Multimodal machine translation through visuals and speech. Machine Translation, 2020, vol. 34, pp. 97-147. DOI: 10.1007/s10590-020-09250-0.
Singh, K., Piyush, P., Kumar, R., Chhabra, S., Goomer, N., & Kashyap, A. Multimodal Data Extraction & Fusion for Health Monitoring System and Early Diagnosis. 2024 International Conference on Computational Intelligence and Computing Applications (ICCICA), 2024, vol. 1, pp. 216-220. DOI: 10.1109/ICCICA60014.2024.10585027.
De Vito, S., Del Giudice, A., D’Elia, G., Esposito, E., Fattoruso, G., Ferlito, S., Formisano, F., Loffredo, G., Massera, E., D’Auria, P., & Di Francia, G. Future Low-Cost Urban Air Quality Monitoring Networks: Insights from the EU’s AirHeritage Project. Atmosphere, 2024, vol. 15, no. 11, article no. 1351. DOI: 10.3390/atmos15111351.
Chernyshev, D., Ryzhakova, G., Honcharenko, T., Petrenko, H., Chupryna, I., Reznik, N. Digital Administration of the Project Based on the Concept of Smart Construction. Explore Business, Technology Opportunities and Challenges After the Covid-19 Pandemic. ICBT 2022. Lecture Notes in Networks and Systems, 2022, vol. 495, pp. 1316–1331. DOI: 10.1007/978-3-031-08954-1_114.
Honcharenko, T., Mihaylenko, V., Borodavka, Y., Dolya, E., & Savenko, V. Information Tools for Project Management of the Building Territory at the Stage of Urban Planning. CEUR Workshop Proceedings, 2021, vol. 2851, pp. 22–33.
Matsiievskyi, O., Achkasov, I., Borodavka, Y., & Mazurenko, R. Behavioral model of autonomous robotic systems using reinforcement learning methods. International Workshop on Information Technologies: Theoretical and Applied Problems, 2024, vol. 3896, pp. 1–9. Available at: https://ceur-ws.org/Vol-3896/short14.pdf (accessed 12.05.2025).
Riabchun, Y., Honcharenko, T., Honta, V., Chupryna, K., & Fedusenko, O. Methods and means of evaluation and development for prospective students’ spatial awareness. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2019, vol. 8, no. 11, pp. 4050-4058. DOI: 10.35940/ijitee.k1532.0981119.
Omas-as, R. M., & Encarnacion, R. E. Stakeholders’ Satisfaction on Institutional Assessment: A Proposal for Unified Feedback Management System with Text Analytics and Sentiment Analysis. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 2024, vol. 4, no. 1, pp. 50-56. DOI: 10.48175/ijarsct-18716.
von Eschenbach, W. J. Transparency and the Black Box Problem: Why We Do Not Trust AI. Philosophy & Technology, 2021, vol. 34, no. 4, pp. 1607–1622. DOI: 10.1007/s13347-021-00477-0.
Dolhopolov, S., Honcharenko, T., Savenko, V., Balina, O., Bezklubenko, I.S., & Liashchenko, T. Construction Site Modeling Objects Using Artificial Intelligence and BIM Technology: A Multi-Stage Approach. 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST), 2023, pp. 174-179. DOI: 10.1109/SIST58284.2023.10223543.
Dolhopolov, S., Honcharenko, T., Terentyev, O., Predun, K., & Rosynskyi, A. Information system of multi-stage analysis of the building of object models on a construction site. IOP Conference Series: Earth and Environmental Science, 2023, vol. 1254, no. 1, article no. 012075. DOI: 10.1088/1755-1315/1254/1/012075.
Hazarika, D., Zimmermann, R., & Poria, S. MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis. Proceedings of the 28th ACM International Conference on Multimedia (MM ‘20), 2020, pp. 1363–1371. DOI: 10.1145/3394171.3413678.
Zadeh, A., Chen, M., Poria, S., Cambria, E., & Morency, L. Tensor Fusion Network for Multimodal Sentiment Analysis. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017, pp. 1103–1114. DOI: 10.18653/v1/D17-1115.
Xu, W., Chen, J., Ding, Z., & Wang, J. Text sentiment analysis and classification based on bidirectional Gated Recurrent Units (GRUs) model. Applied and Computational Engineering, 2024, vol. 77, pp. 132–137. DOI: 10.54254/2755-2721/77/20240670.
Tang, Z. Review of Multimodal Sentiment Analysis Techniques. Applied and Computational Engineering, 2024, vol. 120, pp. 88–97. DOI: 10.54254/2755-2721/2025.18747.
Aldeen, M., MohajerAnsari, P., Ma, J., Chowdhury, M., Cheng, L., & Pesé, M. D. WIP: A First Look At Employing Large Multimodal Models Against Autonomous Vehicle Attacks. Proceedings of the 2024 Symposium on Vehicle Security and Privacy (VehicleSec), 2024, pp. 1–7. DOI: 10.14722/vehiclesec.2024.23044.
Beserra, A. A., Kishi, R. M., & Goularte, R. Evaluating Early Fusion Operators at Mid-Level Feature Space. Proceedings of the Brazilian Symposium on Multimedia and the Web (WebMedia ‘20), 2020, pp. 113–120. DOI: 10.1145/3428658.3431079.
Cheng, J., Feng, C., Xiao, Y., & Cao, Z. Late better than early: A decision-level information fusion approach for RGB-Thermal crowd counting with illumination awareness. Neurocomputing, 2024, vol. 594, article no. 127888. DOI: 10.1016/j.neucom.2024.127888.
Shaikh, M., Chai, D., Islam, S. M., & Akhtar, N. From CNNs to Transformers in Multimodal Human Action Recognition: A Survey. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, vol. 20, no. 8, article no. 260, pp. 1-24. DOI: 10.1145/3664815.
Lu, J., Batra, D., Parikh, D., & Lee, S. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, article no. 2, pp. 13-23.
Tan, H. H., & Bansal, M. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 5100-5111. DOI: 10.18653/v1/D19-1514.
Chen, Y., Li, L., Yu, L., Kholy, A.E., Ahmed, F., Gan, Z., Cheng, Y., & Liu, J. UNITER: UNiversal Image-TExt Representation Learning. Computer Vision – ECCV 2020. Lecture Notes in Computer Science, 2020, vol. 12375, pp. 104-120. DOI: 10.1007/978-3-030-58577-8_7.
Wang, P., Liu, S., & Chen, J. CCDA: A Novel Method to Explore the Cross-Correlation in Dual-Attention for Multimodal Sentiment Analysis. Appl. Sci., 2024, vol. 14, 1934. DOI: 10.3390/app14051934.
Yu, W., Xu, H., Yuan, Z., & Wu, J. Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, no. 12, pp. 10798– 10806. DOI: 10.1609/aaai.v35i12.17289.
Liu, Z., Braytee, A., Anaissi, A., Zhang, G., Qin, L., & Akram, J. Ensemble Pretrained Models for Multimodal Sentiment Analysis using Textual and Video Data Fusion. WWW ‘24: Companion Proceedings of the ACM Web Conference 2024, 2024, pp. 1841–1848. DOI: 10.1145/3589335.3651971.
Keane, M. T., & Smyth, B. Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI). Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science, 2020, vol. 12311, pp. 163–178. DOI: 10.1007/978-3-030-58342-2_11.
Pradhan, B., Dikshit, A., Lee, S., & Kim, H. An explainable AI (XAI) model for landslide susceptibility modeling. Applied Soft Computing, 2023, vol. 142, article no. 110324. DOI: 10.1016/j.asoc.2023.110324.
Jang, H., Kim, S., & Yoon, B. An Explainable AI (XAI) model for text-based patent novelty analysis. Expert Systems with Applications, 2023, vol. 231, article no. 120839. DOI: 10.1016/j.eswa.2023.120839.
Hasan, R., Dattana, V., Mahmood, S., & Hussain, S. Towards Transparent Diabetes Prediction: Combining AutoML and Explainable AI for Improved Clinical Insights. Information, 2025, vol. 16, no. 1, article no. 7. DOI: 10.3390/info16010007.
Choi, S. R., & Lee, M. Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review. Biology, 2023, vol. 12, no. 7, article no. 1033. DOI: 10.3390/biology12071033.
Gao, Y., Liu, J., Li, W., Hou, M., Li, Y., & Zhao, H. Augmented Grad-CAM++: Super-Resolution Saliency Maps for Visual Interpretation of Deep Neural Network. Electronics, 2023, vol. 12, no. 23, article no. 4846. DOI: 10.3390/electronics12234846.
Cheng, Z., Wu, Y., Li, Y., Cai, L., & Ihnaini, B. A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision. Sensors, 2025, vol. 25, article no. 4166. DOI: 10.3390/s25134166.
Waa, J. V., Nieuwburg, E., Cremers, A. H., & Neerincx, M. A. Evaluating XAI: A comparison of rule-based and example-based explanations. Artificial Intelligence, 2021, vol. 291, article no. 103404. DOI: 10.1016/j.artint.2020.103404.
Engel, A., Wang, Z., Frank, N.S., Dumitriu, I., Choudhury, S., Sarwate, A.D., & Chiang, T. Faithful and Efficient Explanations for Neural Networks via Neural Tangent Kernel Surrogate Models. arXiv preprint, 2023, pp. 1–54. DOI: 10.48550/arXiv.2305.14585.
Sun, Y., He, S., Han, X., & Luo, Y. Interpretability in Sentiment Analysis: A Self-Supervised Approach to Sentiment Cue Extraction. Appl. Sci., 2024, vol. 14, 2737. DOI: 10.3390/app14072737.
Gipiškis, R., Tsai, C., & Kurasova, O. Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey. arXiv preprint, 2024, pp. 1-35. DOI: 10.48550/arXiv.2405.01636.
Mabokela, K. R., Primus, M., & Celik, T. Explainable Pre-Trained Language Models for Sentiment Analysis in Low-Resourced Languages. Big Data Cogn. Comput., 2024, vol. 8, article no. 160. DOI: 10.3390/bdcc8110160.
Cerasuolo, F., Guarino, I., Spadari, V., Aceto, G., & Pescapé, A. XAI for Interpretable Multimodal Architectures with Contextual Input in Mobile Network Traffic Classification. 2024 IFIP Networking Conference (IFIP Networking), 2024, pp. 757–762. DOI: 10.23919/IFIPNetworking62109.2024.10619769.
Kharchenko, V., Fesenko, H., & Illiashenko, O. Quality Models for Artificial Intelligence Systems: Characteristic-Based Approach, Development and Application. Sensors, 2022, vol. 22, 4865. DOI: 10.3390/s22134865.
DOI: https://doi.org/10.32620/reks.2025.4.07
Refbacks
- There are currently no refbacks.
