A unified model and method for forecasting energy consumption in distributed computing systems based on stationary and mobile devices
Abstract
Keywords
Full Text:
PDFReferences
Javed, A., Alyas Shahid, M., Sharif, M., & Yasmin, M. Energy consumption in mobile phones. International Journal of Computer Network and Information Security, 2017, vol. 9, no. 12, pp. 18-28. DOI: 10.5815/ijcnis.2017.12.03
Roth, K., Goldstein, F., & Kleinman, J. Energy consumption by office and telecommunications equipment in commercial buildings volume I: energy consumption baseline, National Technical Information Service (NTIS), US Department of Commerce, Springfield, 2002. 211 p. Available at: https://biblioite.ethz.ch/downloads/Roth_ADL_1.pdf (Accessed 01.03.2024)
Giri, A., & Patil, P. Design of a parallel multi-threaded programming model for multicore architecture with resource sharing. Indian Journal of Scientific Research, 2015, vol. 11, no. 1, pp. 85-89. Available at: https://go.gale.com/ps/i.do?id=GALE%7CA454619960&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=09762876&p=AONE&sw=w&userGroupName=anon%7Eaed63acc&aty=open-web-entry (Accessed 01.03.2024)
Caspart, R., Ziegler, S.; Weyrauch, A.; Obermaier, H., Raffeiner, S., Schuhmacher, Leon P., Scholtyssek, J., Trofimova, Darya., Nolden, M., Reinartz, I., Isensee, F., Götz, M., & Debus, C. Precise energy consumption measurements of heterogeneous artificial Intelligence workloads. ISC High Performance 2022: High Performance Computing. ISC High Performance 2022 International Workshops, 2022, pp. 108-121. DOI: 10.1007/978-3-031-23220-6_8.
Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. Low-power CMOS digital design. IEEE Journal of Solid-State Circuits, 1992, vol. 27, no. 4. pp. 473–484. DOI: 10.1109/4.126534.
Dong, M., & Zhong, L. Self-constructive high-Rate system energy modeling for battery-powered mobile systems. ACM/USENIX International Conference on Mobile Systems, Applications, and Services (MobiSys’2011), Association for Computing Machinery, New York, NY, USA, pp. 335–348. DOI: 10.1145/1999995.2000027.
Saipullah, K. M., Anuar, A., Atiqah Ismail, N., & Soo, Y. Measuring power consumption for image processing on android smartphone. American Journal of Applied Sciences. 2012, vol. 9, no. 12, pp. 2052–2057. DOI: 10.3844/ajassp.2012.2052.2057.
Bekaroo, G., & Santokhee, A. Power consumption of the Raspberry Pi: A comparative analysis. In 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech). Balaclava, Mauritius, 2016, pp. 361-366. DOI: 10.1109/EmergiTech.2016.7737367.
Dean, J., & Ghemawat, S. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008, vol. 51, no. 1, pp. 107-113. DOI: 10.1145/1327452.1327492.
Carvalho, S. A., Lima, R. N., Cunha, D. C., & Silva-Filho, A. G. A hardware and software web-based environment for Energy Consumption analysis in mobile devices. In 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 2016, pp. 242–245. DOI: 10.1109/NCA.2016.7778625.
Kharchenko, V., Brezhnev, E., & Sklyar, V. Green information technologies: paradigm and cooperation in research, development and education domains. 8th International Green Energy Conference, Kyiv, Ukraine, 2013, pp. 1-5. https://www.researchgate.net/publication/305787567_Green_Information_Technologies_Paradigm_and_Cooperation_in_Research_Development_and_Education_Domains (Accessed 01.03.2024)
Kharchenko, V., Gorbenko, A., Sklyar, V., & Phillips, C. Green computing in critical application domains: challenges and solutions. 10th Conference on Digital Technologies, DT2013. Žilina, Slovakia, 2013, pp 191-197. DOI: 10.1109/DT.2013.6566310
Mamchych, O., & Volk, M. Smartphone based computing cloud and energy efficiency published in: 2022. 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2022. DOI: 10.1109/DESSERT58054.2022.10018740.
Hamza, S. Distributed computing system on a smartphones-based network in book: Software Technology: Methods and Tools, 2019, pp. 313-325. DOI: 10.1007/978-3-030-29852-4_26.
Yu, J., Williams, E., & Ju, M. Analysis of material and energy consumption of mobile phones in China. Energy Policy, 2010, vol. 38, no. 8, pp. 4135-4141. DOI: 10.1016/j.enpol.2010.03.041.
Damaševičius, R., Štuikys, V., & Toldinas, J. Methods for measurement of energy consumption in mobile devices. Metrology and measurement systems, 2013, vol. 20, no. 3, pp. 419-430. DOI: 10.2478/mms-2013-0036
Comito, C., & Talia, D. Energy consumption of data mining algorithms on mobile phones: Evaluation and prediction. Pervasive and Mobile Computing, 2017, vol. 42, pp. 248-264. DOI: 10.1016/j.pmcj.2017.10.006
Fekete, K., Csorba, K., Forstner, B., Fehér, M., & Vajk, T. Energy-efficient computation offloading model for mobile phone environment. In 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), Paris, France, 2012, pp. 95-99. DOI: 10.1109/CloudNet.2012.6483662.
Ramos, R., Faria P., Gomes L., & Vale Z. Building Energy Consumption Forecast under Different Anticipations on a Green Computation Perspective IFAC-PapersOnLine, 2023, vol. 56, Issue 2, pp. 10923-10928. DOI: 10.1016/j.ifacol.2023.10.778.
Lee, K. P., Chng, C.W, Tong, D.L., & Tseu, K. L. Optimizing Energy Consumption on Smart Home Task Scheduling using Particle Swarm Optimization. Procedia Computer Science, 2023, vol. 220, pp. 195-201. DOI: 10.1016/j.procs.2023.03.027.
Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., & Vandecappelle, A. Custom Memory Management Methodology: Exploration of Memory Organization for Embedded Multimedia System Design. Boston, Kluwer Academic Publishers, 1998. 356 p.
Ivanisenko, I. M., & Volk, M. O. Simulation methods for load balancing in distributed computing. Proceedings of IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, 2017, pp. 690-695. DOI: 10.1109/EWDTS.2017.8110078.
Kondratenko, Y., Kozlov, O., Korobko, O., & Topalov, A. Complex industrial systems automation based on the internet of things implementation. Communications in Computer and Information Science, Springer, Cham, 2018, pp. 164–187. DOI: 10.1007/978-3-319-76168-8_8.
Kondratenko, Y. P., Kozlov, O. V., Korobko, O. V., & Topalov, A. M. Internet of Things approach for automation of the complex industrial systems. 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, 2017, pp. 3-18. Available at: https://ceur-ws.org/Vol-1844/10000003.pdf (Accessed 01.03.2024)
Güçyetmez, M., & Farhan, H.S., Enhancing smart grids with a new IOT and cloud-based smart meter to predict the energy consumption with time series. Alexandria Engineering Journal, 2023, vol. 79, pp. 44-55. DOI: 10.1016/j.aej.2023.07.071.
Zakaria, S., Mativenga P., & Ariff, E.A.R Engku. An Investigation of Energy Consumption in Fused Deposition Modelling using ESP32 IoT Monitoring System. Procedia CIRP, 2023, vol. 116, pp. 263-268. DOI: 10.1016/j.procir.2023.02.045.
Cheng-Fu, H., Ding-Hsiang, H., & Yi-Kuei, L. Network Reliability Evaluation for a Distributed Network with Edge Computing. Computers & Industrial Engineering, vol. 147, 2020. DOI: 10.1016/j.cie.2020.106492.
Guobin, Z., Jian, Z., Jian, T., & Junwu, Z. Collaboration Energy Efficiency with Mobile Edge Computing for Data Collection in IoT. Advances in Artificial Intelligence and Security, Beijing, 2021, pp. 279-285. DOI: 10.1007/978-3-030-78615-1_24.
Qasaimeh, M., Denolf, K., Lo, J., & Vissers, K. Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision Kernels, The 15th IEEE International Conference on Embedded Software and Systems, Nevada, US, 2019, pp. 4-8. DOI: 10.1109/ICESS.2019.8782524.
DOI: https://doi.org/10.32620/reks.2024.2.10
Refbacks
- There are currently no refbacks.
