Analysis of the stress-strain state of a cantilever perforated layer with a cylindrical embedded support

Михайло Леонідович Косенко

Abstract


The article presents an analysis of the stress-strain state of a cantilever perforated layer in contact with a rigid cylindrical embedded support. Such structural elements are widely used in aviation, aerospace, and general engineering to reduce weight, provide access, or perform specific functional tasks. The presence of holes and supports significantly changes the stress-strain state, leading to local stress concentration, which can cause premature failure. A mathematical model based on three-dimensional equations of elasticity theory has been developed for the study. To solve the boundary value problem, a generalized Fourier method was used, which allows the boundary conditions on all surfaces (layer planes, hole surfaces, and the contact boundary with the support) to be satisfied with high accuracy. Satisfying mixed boundary conditions leads to an infinite system of integro-algebraic equations with unknown coefficients. Through analytical transformations, this system is reduced to an infinite system of linear algebraic equations of the second kind, to which the reduction method is applied, ensuring high accuracy of results. As part of the work, a detailed numerical study was carried out for a specific configuration: a layer of ABS plastic with five parallel cylindrical cavities, one of which acts as a rigid fastening. The case of a localized normal load on the upper surface of the layer is considered. Detailed distribution patterns of all components of the stress tensor were analyzed. The results demonstrate the complex three-dimensional nature of the stress distribution arising from the superposition of bending, tension/compression effects, and significant mutual influence of stress concentrators. It has been established that the stress distribution is significantly asymmetrical both relative to the surfaces of the layer and for each cavity individually, which emphasizes the impossibility of using simplified models. Areas of maximum stress concentration have been identified, which are critically important in terms of strength assessment. The developed analytical and numerical approach allows obtaining reliable data on stress and displacement distribution with high accuracy, which is important for verifying the results obtained using numerical methods. The work has significant practical value for design engineers, providing an effective tool for calculating strength, optimizing structures, and ensuring their operational reliability.

Keywords


stress-strain state; Lamé equations; generalized Fourier method; layer with cylindrical cavities

References


Kovel P. P., Bologin A. S., Nagornij L. V. Analiz napruzheno-deformovanogo stanu silovih elementiv konstrukciyi panelej krila litakiv tipu Il-76 za nayavnosti korozijnogo urazhennya. Zbirnik naukovih prac Derzhavnogo naukovo-doslidnogo institutu aviaciyi. 2021. Vip. 17(24). S. 106–116. DOI: https://doi.org/10.54858/dndia.2021-17-16.

Golovanevskiy V., Kondratiev A. Elastic properties of steel-cord rubber conveyor belt. Exp. Tech. 2021. – Vol. 45, no. 2. P. 217–226. DOI: https://doi.org/10.1007/s40799-021-00439-3.

ASM Handbook, Volume 8: Mechanical Testing and Evaluation. Materials Park, OH: ASM International, 2023.

Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The Finite Element Method: Its Basis and Fundamentals. 7th ed. Oxford: Butterworth-Heinemann, 2013.

Static Structural Simulation Using Ansys Discovery. URL: https://courses.ansys.com/index.php/courses/structural-simulation (data zvernennya: 30.09.2025).

Savin G. N. Raspredelenie napryazhenij okolo otverstij. Kiyiv : Nauk. dumka, 1968.– 891 s.

Kosmodamianskij A. S. Teoreticheskaya i prikladnaya mehanika. Doneck : Donec. nac. un-t, 2001. Vip. 32. 210 s.

Podilchuk Yu. N. Trehmernye zadachi teorii uprugosti. Kiyiv : Nauk. Dumka, 1979. – 240 s.

Grinchenko V. T., Meleshko V. V. Garmonicheskie kolebaniya i volny v uprugih telah. Kiyiv : Nauk. dumka, 1981. – 284 s.

Fesenko A., Vaysfel’d N. The Wave Field of a Layer with a Cylindrical Cavity in Structural Integrity. U kn.: Structural Integrity. Springer International Publishing, 2019. – P. 277–282. DOI: https://doi.org/10.1007/978-3-030-21894-2_51.

Fesenko A., Vaysfel’d N. The dynamical problem for the infinite elastic layer with a cylindrical cavity. Procedia Structural Integrity. 2021. – Vol. 33. P. 509–527. DOI: https://doi.org/10.1016/j.prostr.2021.10.058.

Jafari M., Chaleshtari M. H. B., Khoramishad H., Altenbach H. Minimization of thermal stress in perforated composite plate using metaheuristic algorithms WOA, SCA and GA. Composite Structures. 2023. – Vol. 304. P. 116403. DOI: https://doi.org/10.1016/j.compstruct.2022.116403.

Nikolaev A. G., Procenko V. S. Obobshennyj metod Fure v prostranstvennyh zadachah teorii uprugosti. Harkiv: Nac. aerokosm. un-t im. M. Ye. Zhukovskogo «HAI», 2011. – 344 s.

Ukrayinets N., Murahovska O., Prokhorova O. Solving a one mixed problem in elasticity theory for half-space with a cylindrical cavity by the generalized Fourier method. Eastern-European Journal of Enterprise Technologies. 2021. – Vol. 2, no. 7 (110). P. 48–57. DOI: https://doi.org/10.15587/1729-4061.2021.229428.

Miroshnikov V. Yu. The study of the second main problem of the theory of elasticity for a layer with a cylindrical cavity. Strength of Materials and Theory of Structures. 2019. – No. 102. P. 77–90. DOI: https://doi.org/10.32347/2410-2547.2019.102.77-90.

Miroshnikov V., Denysova T., Protsenko V. The study of the first main problem of the theory of elasticity for a layer with a cylindrical cavity. Strength of Materials and Theory of Structures. 2019. – No. 103. P. 208–218. DOI: https://doi.org/10.32347/2410-547.2019.103.208-218.

Miroshnikov V. Yu. Stress State of an Elastic Layer with a Cylindrical Cavity on a Rigid Foundation. International Applied Mechanics. 2020. – Vol. 56, no. 3. P. 372–381. DOI: https://doi.org/10.1007/s10778-020-01021-x.

Miroshnikov V. Yu., Oleshkevich S. V., Medvedyeva A. V., Savin O. B. Doslidzhennya pershoyi osnovnoyi zadachi teoriyi pruzhnosti dlya sharu z troma pozdovzhnimi cilindrichnimi porozhninami. Naukovij visnik budivnictva. Harkiv, 2021. – T. 103, № 1. S. 150–155. DOI: https://doi.org/10.29295/2311-7257-2021-103-1-150-155.

Miroshnikov V., Savin O., Sobol V., Nikichanov V. Solving the Problem of Elasticity for a Layer with N Cylindrical Embedded Supports. Computation. 2023. – Vol. 11, no. 9. P. 172. DOI: https://doi.org/10.3390/computation11090172.

Sverdlov S. Yu. Analiz napruzheno-deformovanogo stanu konsolnoyi pliti z linijnim pidshipnikovim z’yednannyam. Vidkriti informacijni ta komp'yuterni integrovani tehnologiyi. 2025. – № 104. S. 82–96. DOI: https://doi.org/10.32620/oikit.2025.104.06.

Kosenko M., Ilin O., Alyoshechkina T. High-precision calculation of the stress state of the reinforced layer on two cylindrical supports with smooth contact. Solloquium-journal. 2024. – No. 19 (212). P. 14–18. DOI: https://doi.org/10.5281/zenodo.12723834.

Miroshnikov V. Yu., Savin O. B., Kosenko M. L., Ilyin O. O. Analiz napruzhenogo stanu sharu z dvoma cilindrichnimi vrizanimi oporami ta cilindrichnimi vtulkami. Vidkriti informacijni ta komp'yuterni integrovani tehnologiyi. 2024. № 101. S. 112–126. DOI: https://doi.org/10.32620/oikit.2024.101.08.

Kosenko M. L., Ilyin O. O., Sverdlov S. Yu., Savin O. B. Analiz napruzhenogo stanu sharu na dvoh cilindrichnih vrizanih oporah z pidshipnikami kovzannya. International Science Journal of Engineering & Agriculture. 2025. – Vol. 4, no. 2. S. 171–183. DOI: https://doi.org/10.46299/j.isjea.20250402.11.

Ministerstvo osviti ta nauki Ukrayini. Perelik prioritetnih tematichnih napryamiv naukovih doslidzhen i rozrobok. URL: https://mon.gov.ua/news/uryad-viznachiv-onovleniy-perelik-prioritetnikh-tematichnikh-napryamiv-naukovikh-doslidzhen-i-rozrobok (data zvernennya: 30.09.2025).


Refbacks

  • There are currently no refbacks.