Analysis of packet loss probability models in a router buffer based on traffic fractality
Abstract
Keywords
Full Text:
PDFReferences
Millán, G., Lefranc, G., Osorio-Comparán, R., & Lomas-Barrie, V. Time series analysis of computer network traffic in a dedicated link aggregation. Preprint for IEEE Transactions on Information Theory 2021. 7 р. DOI: 10.48550/arXiv.2107.05484.
Dymora, P., & Mazurek, M. Influence of model and traffic pattern on determining the self-similarity in IP networks. Applied sciences, 2021, vol. 11, iss. 1, article 190. DOI: 10.3390/app11010190.
Millán, G., & Lefranc, G. Presentation of an estimator for the Hurst parameter for a self-similar process representing the traffic in IEEE 802.3 networks. International Journal of Computers, Communications & Control (IJCCC), 2009, vol. 4, no. 2, pp. 137-147. DOI:10.15837/ijccc.2009.2.2421.
Bunimovich, L., & Skums, P. Fractal networks: Topology, dimension, and complexity. Chaos, 2024, vol. 34, iss. 4, article 042101. ISSN: 1054-1500. DOI: 10.1063/5.0200632.
Mohammed, A. M., & Agamy, A. F. A survey on the common network traffic source models. International Journal of Computer Networks (IJCN), 2011, vol. 3, iss. 2, pp. 103-115. Available at: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJCN-136 (accessed 20.01.2025).
Melo, E. F., & de Oliveira, H. M. An overview of self-similar traffic: its implications in the network design. Revista de Tecnologia da Informação e Comunicação, 2020, vol. 9, no. 1, pp. 38-46. DOI: 10.48550/arXiv.2005.02858.
Dymora, P., Mazurek, M., & Strzalka, D. Computer network traffic analysis with the use of statistical self-similarity factor. Annales Universitatis Maiae Curie-Sklodowska, Sectio AI Informatica, 2013, vol. 13, no. 1, pp. 69-81. DOI:10.2478/v10065-012-0040-0.
Bhoi, R., & Mishra, S. Analysis and fractal behavior of network traffic data based on topology. International Journal of Engineering Science Invention, 2017, vol. 6, iss. 10, no. 1, pp. 66-69. Available at: http://www.ijesi.org/papers/Vol(6)10/Version-1/K0610016669.pdf (accessed 20.01.2025).
Millan, G., Osorio-Comparan, R., & Lefranc, G. Preliminaries on the accurate estimation of the hurst exponent using time series. Proceedings of 2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, (ICA - ACCA), 2021, article 9465274. DOI: 10.1109/ICAACCA51523.2021.9465274.
Sivaroopan, N., Silva, K., Madarasingha, C., Dahanayaka, T., Jourjon, G., Jayasumana, A., & Thilakarathna, K. A Comprehensive survey on network traffic synthesis: from statistical models to deep learning. arXiv e-prints, 2025. 33 р. DOI: 10.48550/arXiv.2507.01976.
Han, D., Li, H., Fu, X., & Zhou, S. Traffic feature selection and distributed denial of service attack detection in software-defined networks based on machine learning. Sensors, 2024, vol. 24, article no. 4344. 22 р. DOI:10.3390/s24134344.
Zaidyn, M., Akhtanov, S., Turlykozhayeva, D., Temesheva, S., Akhmetali, A., Skabylov, A., & Ussipov, N. Fractality of wireless mesh networks: dimensional effects on network performance. arXiv e-prints, 2025. 11 р. DOI: 10.48550/arXiv.2506.19366.
Meleshko, Y., Drieieva, H., Drieiev, O., Yakymenko, M., Mikhav, V., & Shymko, S. A method of routing of fractal-like traffic with prediction of router load for reduce the probability of network packet loss. Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems (CoLInS), 2023, vol. 3 pp. 434-448. Available at: https://ceur-ws.org/Vol-3403/paper34.pdf (accessed 20.01.2025).
Castellanos-López, S. L., Cruz-Perez, F. A., Rivero Ángeles, M. E., & Hernandez-Valdez, G. Count and Teletraffic Analysis of G/M/1 Queueing Systems with Log-Normal Interarrival Time of Bursty IoT Traffic. IEEE Access, 2025, vol. 13, pp. 50611-50634. DOI: 10.1109/ACCESS.2025.3543460.
DOI: https://doi.org/10.32620/reks.2025.3.17
Refbacks
- There are currently no refbacks.
