Comparison of equivalent circuit and machine learning methods for CubeSat battery discharge modeling
Abstract
Keywords
Full Text:
PDFReferences
NASA Ames Research Center, Small Spacecraft Systems Virtual Institute. Small Spacecraft Technology: State-of-the-Art Report. 2024 Edition. NASA/TP–20250000142. Moffett Field, CA: NASA Ames Research Center. Available at: https://www.nasa.gov/smallsat-institute/sst-soa/ (accessed 2.05.2025).
CubeSat Design Specification (1U – 12U). Rev 14.1. The CubeSat Program, Cal Poly SLO, 2022. 34 p. Available at: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf. (accessed 2.05.2025).
Liubimov, O., Turkin, I., & Volobuieva, L. The WASM3 Interpreter as a Hard Real-Time Software Platform for the On-Board Computer of a Student Nanosatellite. 13th International Conference on Dependable Systems, Services and Technologies (DESSERT). Athens, Greece, 2023, pp. 1–8. DOI: 10.1109/DESSERT61349.2023.10416436.
Villela, T., Costa, C. A., Brandão, A. M., Bueno, F. T., & Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. International Journal of Aerospace Engineering, 2019, article no. 5063145. 13 p. DOI: 10.1155/2019/5063145.
Kulu, E. Nanosats Database: World's largest database of nanosatellites, over 4100 nanosats and CubeSats. Available at: https://www.nanosats.eu/#figures. (accessed 22.05.2025).
Jacklin, S. A. Small-Satellite Mission Failure Rates. NASA/TM – 2018–220034. Moffett Field, CA: NASA Ames Research Center. 46 p. Available at: https://ntrs.nasa.gov/api/citations/20190002705/downloads/20190002705.pdf. (accessed 20.05.2025).
Swartwout, M. The First One Hundred CubeSats: A Statistical Look. Journal of Small Satellites, 2013, vol. 2 no. 2, pp. 213–233. Available at: https://jossonline.com/storage/2021/08/0202-Swartwout-The-First-One-Hundred-Cubesats.pdf. (accessed 2.05.2025).
Abagero, A., Abebe, Y., Tullu, A., Jung, Y. S. & Jung, S. A. Deep Learning-Based MPPT Approach to Enhance CubeSat Power Generation. IEEE Access, 2025, vol. 13, pp. 40076–40089. DOI: 10.1109/ACCESS.2025.3546066.
Li, P., Zhang, J., Xu, R., Zhou, J., & Gao, Z. Integration of MPPT algorithms with spacecraft applications: Review, classification and future development outlook. Energy, 2024, vol. 308. DOI: 10.1016/j.energy.2024.132927.
Shan, C, Chin, CS, Mohan, V & Zhang, C. Review of Various Machine Learning Approaches for Predicting Parameters of Lithium-Ion Batteries in Electric Vehicles. Batteries. 2024, vol. 10, iss. 6, article no. 181. DOI: 10.3390/batteries10060181.
Shakoor, U., Alayedi, M., & Elsayed, E. E. Comprehensive analysis of Cubesat electrical power systems for efficient energy management. Discov Energy, 2025, vol. 5, iss. 9. DOI: 10.1007/s43937-025-00069-5.
Lin, C., Tuo, X., Wu, L., Zhang, G., Lyu, Z., & Zeng, X. Physics-informed machine learning for accurate SOH estimation of lithium-ion batteries considering various temperatures and operating conditions, Energy, 2025, vol. 318, article no. 134937, DOI: 10.1016/j.energy.2025.134937.
Gao, B, Li, X, Guo, F., & Wang, X. Performance Analysis of Battery State Prediction Based on Improved Transformer and Time Delay Second Estimation Algorithm. Batteries. 2025; vol. 11, iss. 7, article no. 262. DOI: 10.3390/batteries11070262.
Ibrahim, A. A., Helmy, S., AbuZayed, U., & Moustafa, R. Modeling and Control of a Charge/Discharge Unit of Electric Power System for Low Earth Orbit Satellites. 2019 International Conference on Innovative Trends in Computer Engineering (ITCE). Aswan, Egypt, 2019, pp. 408–413. DOI: 10.1109/ITCE.2019.8646670.
Perumal, R. P., Voos, H., Vedova, F. D., & Moser, H. Small Satellite Reliability, A Decade in Review. SSC21-WKIII-02. 35th Annual Small Satellite Conference. Logan, UT, 2021. 12 p. DOI: 10.2514/6.2021-3688.
Kulu, E. CubeSats & Nanosatellites - 2024 Statistics, Forecast and Reliability. 75th International Astronautical Congress (IAC 2024). Milan, Italy, 14-18 October 2024, article no. 83232. 14 p. Available at: https://iafastro.directory/iac/archive/tree/IAC-24/B4/6A/IAC-24,B4,6A,13,x83232.brief.pdf. (accessed 22.05.2025).
Jara, A., Lepcha, P., Kim, S., Masui, H., Yamauchi, T., Maeda, G., & Cho, M. On-orbit electrical power system dataset of 1U CubeSat constellation. Data in Brief, 2022, vol. 45, no. 108697. DOI: 10.1016/j.dib.2022.108697.
RM, S. Computation of Eclipse Time for Low-Earth Orbiting Small Satellites. International Journal of Aviation, Aeronautics, and Aerospace, 2019, vol. 6 no. 5. DOI: 10.15394/ijaaa.2019.1412.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. Least Angle Regression. The Annals of Statistics, Ann. Statist., 2004, vol. 32 no. 2, pp. 407–499. DOI: 10.1214/009053604000000067.
Iturbide, E., Cerdá, J., & Graff, M. A Comparison between LARS and LASSO for Initialising the Time-Series Forecasting Auto-Regressive Equations. Procedia Technology, 2013, vol. 7, pp. 282–288. DOI: 10.1016/j.protcy.2013.04.035.
DOI: https://doi.org/10.32620/reks.2025.3.16
Refbacks
- There are currently no refbacks.
