Method for matching satellite and UAV images for visual place recognition with cross-view color normalization
Abstract
Keywords
Full Text:
PDFReferences
Wang, Y., Feng, X., Li, F., Xian, Q., Jia, Z.-H., Du, Z., & Liu, C. Lightweight visual localization algorithm for UAVs. Scientific Reports, 2025, vol. 15, no. 1, article no. 6069. DOI: 10.1038/s41598-025-88089-y.
Cui, Z., Zhou, P., Wang, X., Zhang, Z., Li, Y., Li, H., & Zhang. Y. A Novel Geo-Localization Method for UAV and Satellite Images Using Cross-View Consistent Attention. Remote Sensing, 2023, vol. 15, no. 19, article no. 4667. DOI: 10.3390/rs15194667.
Yao, Y., Sun, C., Wang, T., Yang, J., & Zheng, E. UAV Geo-Localization Dataset and Method Based on Cross-View Matching. Sensors, 2024, vol. 24, no. 21, article no. 6905. DOI: 10.3390/s24216905.
Fesenko, H. V., & Kharchenko, V. S. Vyznachennya optymalʹnoho marshrutu oblʹotu zadanykh tochok terytoriyi potentsiyno nebezpechnoho obʺyektu flotom BPLA [Determination of an optimal route for flight over of specified points of a potentially dangerous object territory by UAV fleet]. Radioelectronic and Computer Systems, 2019, no. 3, pp. 63-72. DOI: 10.32620/reks.2019.3.07. (In Ukrainian).
Fan, J., Zheng, E., He, Y., & Yang, J. A Cross-View Geo-Localization Algorithm Using UAV Image and Satellite Image. Sensors, 2024, vol. 24, no. 12, article no. 3719. DOI: 10.3390/s24123719.
Tsekhmystro, R., Rubel, O., Prysiazhniuk, O., & Lukin, V. Impact of distortions in UAV images on quality and accuracy of object localization. Radioelectronic and Computer Systems, 2024, vol. 2024, no. 4, pp. 59-67. DOI: 10.32620/reks.2024.4.05.
Karapet, B., Savitskyi, R., & Vakaliuk, T. Method of comparing and transforming images obtained using UAV. Radioelectronic and Computer Systems, 2024, vol. 2024, no. 1, pp. 99-115. DOI: 10.32620/reks.2024.1.09.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conf. Comput. Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.
Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 2016, vol. 32, no. 1, pp. 1–19. DOI: 10.1109/TRO.2015.2496823.
Cummins, M., & Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research, 2008, vol. 27, no. 6, pp. 647–665. DOI: 10.1177/0278364908090961.
Galvez-López, D., & Tardos, J. D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics, 2012, vol. 28, no. 5, pp. 1188–1197. DOI: 10.1109/TRO.2012.2197158.
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40, iss. 6, pp. 1437-1451 DOI: 10.1109/TPAMI.2017.2711011.
Hausler, S., Garg, S., Xu, M., Milford, M., & Fischer, T. Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 14136-14147. DOI: 10.1109/CVPR46437.2021.01392.
Workman, S., Souvenir, R., & Jacobs, N. Wide-Area Image Geolocalization With Aerial Reference Imagery. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 3961-3969. DOI: 10.1109/ICCV.2015.451.
Lin, T.-Y., Cui, Y., Belongie, S., & Hays, J. Learning Deep Representations for Ground-to-Aerial Geolocalization. 015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 5007-5015. DOI: 10.1109/CVPR.2015.7299135.
Zheng, Z., Wei, Y., & Yang, Y. University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization. Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 1395–1403. DOI: 10.1145/3394171.3413896.
Zhu, S., Yang, T., & Chen, C. VIGOR: Cross-View Image Geo-Localization Beyond One-to-One Retrieval. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 5316-5325. DOI: 10.1109/CVPR46437.2021.00364.
Zhu, R., Yin, L., Yang, M., Wu, F., Yang, Y., & Hu, W. SUES-200: A Multi-Height Multi-Scene Cross-View Image Benchmark Across Drone and Satellite. IEEE Transactions on Circuits and Systems for Video Technology, 2023, vol. 33, no. 9, pp. 4825–4839. DOI: 10.1109/TCSVT.2023.3249204.
Cisneros, I., Yin, P., Zhang, J., Choset, H., & Scherer, S. ALTO: A Large-Scale Dataset for UAV Visual Place Recognition and Localization. arXiv:2207.12317. DOI: 10.48550/arXiv.2207.12317.
Chen, J., Wen, G., Jian, H., & Fan, X. A Visual Localization Benchmark for UAVs in Complex Multi-Terrain Environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, pp. 1–15. DOI: 10.1109/JSTARS.2025.3526695.
Schleiss, M., Rouatbi, F., & Cremers, D. VPAIR -- Aerial Visual Place Recognition and Localization in Large-scale Outdoor Environments. arXiv.2205.11567. DOI: 10.48550/arXiv.2205.11567.
Komorowski, J., Wysoczańska, M., & Trzcinski, T. MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition. 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8. DOI: 10.1109/IJCNN52387.2021.9533373.
Berton, G., Masone, C., & Caputo, B. Re-thinking Visual Geo-Localization for Large-Scale Applications. arXiv.2204.02287, pp. 1-15. DOI: 10.48550/arXiv.2204.02287.
Ali-Bey, A., Chaib-Draa, B., & Giguère, P. MixVPR: Feature Mixing for Visual Place Recognition. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023, pp. 2997-3006. DOI: 10.1109/WACV56688.2023.00301.
Ali-bey, A., Chaib-draa, B., & Giguère, P. GSV-Cities: Toward appropriate supervised visual place recognition. Neurocomputing, 2022, vol. 513, pp. 194–203. DOI: 10.1016/j.neucom.2022.09.127.
Zaffar, M., Ehsan, S., Momeni, L., & et al. VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change. International Journal of Computer Vision, 2021, vol. 129, pp. 2136–2174. DOI: 10.1007/s11263-021-01469-5.
Keetha, N., Mishra, A., Karhade, J., & et al. AnyLoc: Towards Universal Visual Place Recognition. IEEE Robotics and Automation Letters, 2024, vol. 9, no. 2, pp. 1286-1293. DOI: 10.1109/LRA.2023.3343602.
Radford, A., Kim, J. W., Hallacy, C., & et al. Learning Transferable Visual Models From Natural Language Supervision. arXiv.2103.00020, 2021, pp. 1-48. DOI: 10.48550/arXiv.2103.00020.
Oquab, M., Darcet, T., Moutakanni, T., & et al. DINOv2: Learning Robust Visual Features without Supervision. arXiv.2304.07193, 2024. DOI: 10.48550/arXiv.2304.07193.
Berton, G., Trivigno, G., Caputo, B., & Masone, C. EigenPlaces: Training Viewpoint Robust Models for Visual Place Recognition. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023, pp. 11046-11056. DOI: 10.1109/ICCV51070.2023.01017.
Shao, J., & Jiang, L. Style Alignment-Based Dynamic Observation Method for UAV-View Geo-Localization. IEEE Transactions on Geoscience and Remote Sensing, 2023, vol. 61, pp. 1–14, article no. 3000914. DOI: 10.1109/TGRS.2023.3337383.
Gallo, I., Rehman, A. U., Dehkordi, R. H., Landro, N., La Grassa, R., & Boschetti, M. Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images. Remote Sensing, 2023, vol. 15, no. 2, article no. 539. DOI: 10.3390/rs15020539.
Wu, T., & Dong, Y. YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Applied Sciences, 2023, vol. 13, no. 24, article no. 12977. DOI: 10.3390/app132412977.
Rainio, O., Teuho, J., & Klén, R. Evaluation metrics and statistical tests for machine learning. Scientific Reports, 2024, vol. 14, article no. 6086. DOI: 10.1038/s41598-024-56706-x.
Ultralytics. YOLO11. Available at: https://docs.ultralytics.com/models/yolo11 (accessed 04.05.2025).
Buildings Instance Segmentation - v1 raw-images. Roboflow. Available at: https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation/dataset/1 (accessed 04.05.2025).
Jocher, G., Qiu, J., & Chaurasia, A. Ultralytics YOLO. Python, Jan. 2023. Available at: https://github.com/ultralytics/ultralytics (accessed 04.05.2025).
Çorbacıoğlu, Ş. K., & Aksel, G. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 2023, vol. 23, no. 4, pp. 195-198. DOI: 10.4103/tjem.tjem_182_23.
DOI: https://doi.org/10.32620/reks.2025.3.11
Refbacks
- There are currently no refbacks.
