Intelligent system for real-time detection and classification of solar panel defects
Abstract
Keywords
Full Text:
PDFReferences
Schulte, E., Scheller, F., Sloot, D., & Bruckner, T. A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance. Energy Research & Social Science, 2022, vol. 84, article no. 102339. DOI: 10.1016/j.erss.2021.102339.
Lopushanska, M., & Ivanov, Ye. Klimatychni chynnyky ta yikhnya rolʹ u rozvytku sonyachnoyi enerhetyky u Lʹvivsʹkiy oblasti [Climate factors and their role in the solar energy development in the Lviv region]. Ecological Sciences, 2022, vol. 45, pp. 54–59. DOI: 10.32846/2306-9716/2022.eco.6-45.9. (In Ukrainian).
Sun, X., Silverman, T. J., Zhou, Z., Khan, M. R., Bermel, P., & Alam, M. A. Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling. IEEE Journal of Photovoltaics, 2017, vol. 7, no. 2, pp. 566-574. DOI: 10.1109/JPHOTOV.2016.2646062.
Al Dhafari, L. S., Afzal, A., Al Abri, O. K., & Khan, A. Solar-Powered UAVs: A systematic Literature Review. Proc. 2nd Int. Conf. on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 2024, pp. 1-8. DOI: 10.1109/UVS59630.2024.10467158.
Radiuk, P., Rusyn, B., Melnychenko, O., Perzynski, T., Sachenko, A., Svystun, S., & Savenko, O. Criticality Assessment of Wind Turbine Defects via Multispectral UAV Fusion and Fuzzy Logic. Energies, 2025, vol. 18, article no. 4523. DOI: 10.3390/en18174523.
Hurin, A., Khudov, H., Kostyria , O., Maslenko, O. & Siadrystyi, S. Comparative analysis of spectral anomalies detection methods on images from on-board remote sensing systems. Advanced Information Systems, 2024, vol. 8, iss. 2, pp. 48–57. DOI: 10.20998/2522-9052.2024.2.06.
Tripathi, A., Gundebommu, S. L., Mishra, H., Shravani, C., Alwetaishi, M., Atamurotov, F., Benti, N. E., Sura, S., & Saleel C., A. Integration of Solar PV Panels in Electric Vehicle Charging Infrastructure: Benefits, Challenges, and Environmental Implications. Energy Science & Engineering, 2025, vol. 13, iss. 4, pp. 2135-2152. DOI: 10.1002/ese3.70014.
Venkatakrishnan, G. R., Rengaraj, R., Tamilselvi, S., Harshini, J., Sahoo, A., Saleel, C. A., Abbas, M., Cuce, E., Jazlyn, C., Shaik, S., Cuce, P. M., & Riffat, S. Detection, location, and diagnosis of different faults in large solar PV system—a review. International Journal of Low-Carbon Technologies, 2023, vol. 18, pp. 659–674. DOI: 10.1093/ijlct/ctad018.
Pathak, S. P., Patil, S., & Patel, S. Solar panel hotspot localization and fault classification using deep learning approach. Procedia Computer Science, 2022, vol. 204, pp. 698-705. DOI: 10.1016/j.procs.2022.08.084.
Abdallaha, F. S. M., Abdullaha, M. N., Musirinb, I., & Elshamyc, A. M.Intelligent solar panel monitoring system and shading detection using artificial neural networks. Energy Reports, 2023, vol. 9, sup. 10, pp. 324-334. DOI: 10.1016/j.egyr.2023.05.163.
El-Banby, G. M., Moawad, N. M., Abouzalm, B. A., Abouzaid, W. F., & Ramadan, E. A. Photovoltaic system fault detection techniques: a review. Neural Computing and Applications, 2023, vol. 35, pp. 24829-24842. DOI: 10.1007/s00521-023-09041-7.
Li, T., Hua, M., & Li, Q. Intelligent Inspection Method for Photovoltaic Modules Based on Image Processing and Deep Learning. Advances in Artificial Intelligence, Big Data and Algorithms. IOS Press, 2023, pp. 48-56, DOI: 10.3233/FAIA230791.
Ali Jallal, M., El Yassini, A., Chabaa, S., & Zeroual, A. Towards Smart Monitoring Systems: Fault Detection and Diagnosis-Based Artificial Intelligence Algorithms in Solar PV Power Plants. Journal of Nano- and Electronic Physics, 2022, vol. 14, no. 5, article no. 05004. DOI: 10.21272/jnep.14(5).05004.
Et-taleby, A., Chaibi, Y., Ayadi, N., Elkari, B., Benslimane, M., & Chalh, Z. Enhancing fault detection and classification in photovoltaic systems based on a hybrid approach using fuzzy logic algorithm and thermal image processing, Scientific African, 2025, vol. 28, article no. e02684. DOI: 10.1016/j.sciaf.2025.e02684.
Nassreddine, G., El Arid, A., Nassereddine, M., & Al Khatib, O. Fault Detection and Classification for Photovoltaic Panel System Using Machine Learning Techniques. Applied AI Letters, vol. 6, iss. 2, article no. e115. DOI: 10.1002/ail2.115.
Ghahremani, A., Adams, S. D., Norton, M., Khoo, S. Y., & Kouzani, A. Z. Advancements in AI-Driven detection and localisation of solar panel defects. Advanced Engineering Informatics, 2025, vol. 64, article no. 103104. DOI: 10.1016/j.aei.2024.103104.
Khudov, H., Makoveichuk, O., Khizhnyak, I., Varvarov, V., & Zots, F. Experimental studies of the image segmentation method quality from unmanned aerial vehicles based on the ant colony optimization algorithm under the influence of additive Gaussian noise. Advanced Information Systems, 2025, vol. 9, iss. 3, pp. 14-21. DOI: 10.20998/2522-9052.2025.3.02.
Jia, Y., Chen, G., & Zhao, L. Defect detection of photovoltaic modules based on improved VarifocalNet. Scientific Reports, 2024, vol. 14, article no. 15170. DOI: 10.1038/s41598-024-66234-3.
Dhimish, M., & Badran, G. Photovoltaic Hot-Spots Fault Detection Algorithm using Fuzzy Systems. IEEE Transactions on Device and Materials Reliability, 2019, vol. 19, no. 4, pp. 671-679. DOI: 10.1109/TDMR.2019.2944793.
Park, Y. Optimal and robust design of brain-state-in-a-box neural associative memories. Neural Networks, 2010, vol. 23, no. 2, pp. 210–218. DOI: 10.1016/j.neunet.2009.10.008.
Prabhakaran, S., Uthra, R. A., & Preetharoselyn, J. Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels. Computer Systems Science & Engineering, 2023, vol. 44, no. 3, pp. 2683-2700. DOI: 10.32604/csse.2023.028898.
Sevrani, F., & Abe, K. On the Synthesis of Brain-State-in-a-Box Neural Models with Application to Associative Memory. Neural Computation, 2000, vol. 12, no. 2, pp. 451–472. DOI: 10.1162/089976600300015871.
Bodyanskiy, Y. V., & Teslenko, N. A. Adaptive learning of fuzzy BSB and GBSB neural models. Cybernetics and Systems Analysis, 2006, vol. 42, pp. 786–794. DOI: 10.1007/s10559-006-0119-y.
DOI: https://doi.org/10.32620/reks.2025.3.08
Refbacks
- There are currently no refbacks.
