Empirical evaluation of feature selection and machine learning techniques to recommend clones for software refactoring
Abstract
Keywords
Full Text:
PDFReferences
Rattan, D., Bhatia, R., & Singh, M. Software clone detection: A systematic review. Information and Software Technology, 2013, vol. 55, no. 7, pp. 1165–1199. DOI: 10.1016/j.infsof.2013.01.008.
Roy, C. K., Cordy, J. R., & Koschke, R. Comparison and evaluation of code clone detection techniques and tools: A qualitative approach. Science of Computer Programming, 2009, vol. 74, no. 7, pp. 470–495. DOI: 10.1016/j.scico.2009.02.007.
Roy, C. K., Zibran, M. F., & Koschke, R. The Vision of Software Clone Management: Past, Present, and Future. Proceedings of the IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, 2014, pp. 18–33. DOI: 10.1109/CSMR-WCRE.2014.6747168.
Sheneamer, A., & Kalita, J. A Survey of Software Clone Detection Techniques. International Journal of Computer Applications, 2016, vol. 137, no. 10, pp. 1–21. DOI: 10.5120/ijca2016908896.
Zibran, M. F. Analysis and visualization for clone refactoring. Proceedings of the 2015 IEEE 9th International Workshop on Software Clones (IWSC), 2015, pp. 47–48. DOI: 10.1109/IWSC.2015.7069889.
Tairas, R., & Gray, J. Clone maintenance through analysis and refactoring. Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering, 2008, pp. 29–32. DOI: 10.1145/1496653.1496661.
Mondal, M., Roy, C. K., & Schneider, K. A. A survey on clone refactoring and tracking. Journal of Systems and Software, 2020, vol. 159, article no. 110429. DOI: 10.1016/j.jss.2019.110429.
Duala-Ekoko, E., & Robillard, M. P. Clone tracker: Tool support for code clone management. Proceedings of the International Conference on Software Engineering, 2008, pp. 843–846. DOI: 10.1145/1368088.1368218.
Kaur, M., Rattan, D., & Lal, M. An Approach To Recommend Clones For Refactoring Using Machine Learning And Feature Selection. IOSR Journal of Computer Engineering, 2023, vol. 25, no. 6, pp. 62–64. DOI: 10.9790/0661-2506016264.
Chen, Z., Kwon, Y. W., & Song, M. Clone refactoring inspection by summarizing clone refactorings and detecting inconsistent changes during software evolution. Journal of Software: Evolution and Process, 2018, vol. 30, no. 1, pp. 1–24. DOI: 10.1002/smr.1951.
Alharbi, M. A comparative study of automated refactoring tools. IEEE Access, 2024, vol. 12, pp. 18764–18781. DOI: 10.1109/ACCESS.2024.3361314.
Alomar, E. A., & Mkaouer, M. W. Behind the intent of extract method refactoring. IEEE Transactions on Software Engineering, 2024, vol. 50, no. 1, pp. 668–694. DOI: 10.1109/TSE.2023.3345800.
Kalhor, S., Keyvanpour, M. R., & Salajegheh, A. A systematic review of refactoring opportunities by software antipattern detection. Automated Software Engineering, 2024, vol. 31, no. 1, article no. 42. DOI: 10.1007/s10515-024-00443-y.
Higo, Y., Kamiya, T., Kusumoto, S., & Inoue, K. Refactoring Support Based on Code Clone Analysis. Proceedings of the Product Focused Software Process Improvement, 5th International Conference (PROFES 2004), Kansai Science City, Japan, 2004, pp. 220–233. DOI: 10.1007/978-3-540-24659-6_16.
Higo, Y., Kamiya, T., Kusumoto, S., & Inoue, K. ARIES: Refactoring support tool for code clone. Proceedings of the International Conference on Software Engineering, 2005, pp. 53–56. DOI: 10.1145/1083292.1083306.
Higo, Y., Kusumoto, S., & Inoue, K. A metric-based approach to identifying refactoring opportunities for merging code clones in a Java software system. Journal of Software Maintenance and Evolution: Research and Practice, 2008, vol. 20, no. 6, pp. 435–461. DOI: 10.1002/smr.394.
Schulze, S., Kuhlemann, M., & Rosenmüller, M. Towards a refactoring guideline using code clone classification. Proceedings of the ACM International Conference, 2009, pp. 1–4. DOI: 10.1145/1636642.1636648.
Choi, E., Yoshida, N., Ishio, T., Inoue, K., & Sano, T. Extracting code clones for refactoring using combinations of clone metrics. Proceedings of the International Workshop on Software Clones (IWCS), 2011, pp. 7–13. DOI: 10.1145/1985404.1985407.
Mondal, M., Roy, C. K., & Schneider, K. A. Automatic identification of important clones for refactoring and tracking. Proceedings of the 2014 IEEE International Workshop on Source Code Analysis and Manipulation (SCAM), 2014, pp. 11–20. DOI: 10.1109/SCAM.2014.11.
Wang, W., & Godfrey, M. W. Recommending clones for refactoring using design, context, and history. Proceedings of the 4th IEEE International Conference on Software Maintenance and Evolution (ICSME), 2014, pp. 331–340. DOI: 10.1109/ICSME.2014.55.
Rongrong, S., Liping, Z., & Fengrong, Z. A Method for Identifying and Recommending Reconstructed Clones. Proceedings of the 2019 International Conference on Management Engineering, Software Engineering and Service Sciences (ICMESS), 2019, pp. 39–44.
Sheneamer, A. M. An Automatic Advisor for Refactoring Software Clones Based on Machine Learning. IEEE Access, 2020, vol. 8, pp. 124978–124988. DOI: 10.1109/ACCESS.2020.3006178.
Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang, X., & Morgenthaler, J. D. Automatic clone recommendation for refactoring based on the present and the past. Proceedings of the 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018, pp. 115–126. DOI: 10.1109/ICSME.2018.00021.
Fanqi, M. Using self-organized mapping to seek refactorable code clone. Proceedings of the 2014 International Conference on Communication Systems and Network Technologies (CSNT), 2014, pp. 851–855. DOI: 10.1109/CSNT.2014.177.
Kaur, M., & Rattan, D. A systematic literature review on the use of machine learning in code clone research. Computer Science Review, 2023, vol. 47. DOI: 10.1016/j.cosrev.2022.100528.
Quradaa, F. H., Shahzad, S., & Almoqbily, R. S. A systematic literature review on the applications of recurrent neural networks in code clone research. Plos One, 2024, vol. 19, no. 2, article no. e0296858. DOI: 10.1371/journal.pone.0296858.
Idouglid, L., Tkatek, S., Elfayq, K., & Guezzaz, A. A novel anomaly detection model for the industrial internet of things using machine learning techniques. Radioelectronics and Computer Systems, 2024, vol. 2024, no. 1, pp. 143–151. DOI: 10.32620/reks.2024.1.12.
DOI: https://doi.org/10.32620/reks.2025.3.04
Refbacks
- There are currently no refbacks.
