A numerical simulation study of hydrogen-air mixture combustion in a closed chamber at low initial pressure
Abstract
Keywords
Full Text:
PDFReferences
Kamran, M., & Turzynski, M. Exploring hydrogen energy systems: A comprehensive review of technologies, applications, prevailing trends, and associated challenges. Journal of Energy Storage, 2024, vol. 96, article no. 112601. DOI: 10.1016/j.est.2024.112601.
Di Nardo, A., Calabrese, M., Venezia, V., Portarapillo, M., Turco, M., Di Benedetto, A., & Luciani, G. Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future. Energies, 2023, vol. 16, no. 23, article no. 7908. DOI: 10.3390/en16237908.
Shen, H., Crespo del Granado, P., Jorge R. S., & Loffler, K. Environmental and climate impacts of a large-scale deployment of green hydrogen in Europe. Energy and Climate Change, 2024, vol. 5, article no. 100133. DOI: 10.1016/j.egycc.2024.100133.
Plankovskyy, S., Popov, V., Shypul, O., Tsegelnyk, Y., Tryfonov, O., & Brega, D. Advanced thermal energy method for finishing precision parts. In Advanced Machining and Finishing; Gupta, K., Pramanik, A., Eds.; Elsevier: Amsterdam, the Netherlands, 2021, pp. 527-575. DOI: 10.1016/B978-0-12-817452-4.00014-2.
Plankovskyy, S., Shypul, O., Tsegelnyk, Y., Brega, D., Tryfonov, O., & Malashenko, V. Basic Principles for Thermoplastic Parts Finishing with Impulse Thermal Energy Method. In Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials; Kumar, K., Babu, B., Davim, J., Eds. IGI Global: Hershey PA, USA, 2022, pp. 49-87. DOI: 10.4018/978-1-7998-7864-3.ch003.
Galliková, J., Grenčík, J., Barta, D., Barlok, M. FMECA analysis of thermal deburring machine EXTRUDE HONE TEM P-350. Scientific Journals of the Maritime University of Szczecin, 2020, vol. 63, pp. 9-16. DOI: 10.17402/434.
Kulik, P. Thermal deburring machine and method of thermal deburring. WO patent 2019/054886 Al, European Patent Office, 2017.
Li, S., Li, X., Jin, H., Liu, Y., & Wu, Y. A Numerical Simulation Study on the Combustion of Natural Gas Mixed with Hydrogen in a Partially Premixed Gas Water Heater. Energies, 2024, vol. 17, no. 16, article no. 4069. DOI: 10.3390/en17164069.
Amzin, S., & Mohd Yasin, M. F. Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off. Computation, 2021, vol. 9, article no. 43. DOI: 10.3390/computation9040043.
Ma, X., Nie, B., Wang, W., Zhao, D., Zhang, Y., Yang, Y., Ma, C., Hu, B., Chang, L., & Yang, L. Effect of hydrogen concentration, initial pressure and temperature on mechanisms of hydrogen explosion in confined spaces. Combustion and Flame, 2024, vol. 269, article no. 113696. DOI: 10.1016/j.combustflame.2024.113696.
Han, H., Ma, Q., Qin, Z., Li, Y., & Kong, Y. Experimental study on combustion and explosion characteristics of hydrogen-air premixed gas in rectangular channels with large aspect ratio. International Journal of Hydrogen Energy, 2024, vol. 57, pp. 1041-1050. DOI: 10.1016/j.ijhydene.2024.01.125.
Rudy, W., Pekalski, A., Makarov, D., Teodorczyk, A., & Molkov, V. Prediction of Deflagrative Explosions in Variety of Closed Vessels. Energies, 2021, vol. 14, no. 8, article no. 2138. DOI: 10.3390/en14082138.
Shypul, O., Garyn, V., Tryfonov, O., Myntiuk, V., Egedy, A. Study of the green hydrogen-air mixture formation in closed chamber with given composition. Hungarian Journal of Industry and Chemistry, 2024, vol. 52, no. 2. (In press).
Reyes, M., Tinaut, F. V., Horrillo A., & Lafuente, A. Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Applied Thermal Engineering, 2018, vol. 130, pp. 684-697. DOI: 10.1016/j.applthermaleng.2017.10.165.
Menter, F. Two-equation eddy-viscosity transport turbulence model for engineering applications. AIAA Journal, 1994, vol. 32, pp. 1598-1605. DOI: 10.2514/3.12149.
Fluent Theory Guide. Available at: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v242/en/flu_th/flu_th.html (accessed 29.10.2024).
Nguyen, P., Vervisch, L., Subramanian, V., & Domingo, P. Multi-Dimensional Flamelet-Generated Manifolds for Partially Premixed Combustion. Combustion and Flame, 2010, vol. 157, no. 1, pp. 43-61. DOI: 10.1016/j.combustflame.2009.07.008.
Lodier, G., Vervisch, L., Moureau, V., & Domingo, P. Composition-Space Premixed Flamelet Solution with Differential Diffusion for In Situ Flamelet-Generated Manifolds. Combustion and Flame, 2011, vol. 158, no. 10, pp. 2009-2016. DOI: 10.1016/j.combustflame.2011.03.011.
GRI-Mech 3.0. Available at: http://combustion.berkeley.edu/gri-mech/version30/text30.html (аccessed 23.09.2024).
DOI: https://doi.org/10.32620/reks.2024.4.21
Refbacks
- There are currently no refbacks.