Intellectual code analysis in automation grading
Abstract
Keywords
Full Text:
PDFReferences
Conejo, R., Barros, B. & Bertoa, M. F. Automated assessment of complex programming tasks using SIETTE. IEEE Transactions on Learning Technologies, 2019, vol. 12, no. 4, pp. 470–484. DOI: 10.1109/tlt.2018.2876249.
Bertagnon, A., & Gavanelli, M. MAESTRO: a semi-autoMAted Evaluation SysTem for pROgramming assignments. Proceeding of the 2020 international conference on computational science and computational intelligence (CSCI), Las Vegas, NV, USA, IEEE, 2020, pp. 953-958. DOI: 10.1109/csci51800.2020.00177.
Ala-Mutka, K. M. A survey of automated assessment approaches for programming assignments. Computer Science Education, 2005, vol. 15, iss. 2, pp. 83–102. DOI: 10.1080/08993400500150747.
Ball, T. The concept of dynamic analysis. ACM SIGSOFT Software Engineering Notes, 1999, vol. 24, iss. 6, pp. 216–234. DOI: 10.1145/318774.318944.
Coore, D., & Fokum, D. Facilitating course assessment with a competitive programming platform. Proceeding of the SIGCSE '19: the 50th ACM technical symposium on computer science education, New York, NY, USA, Association for Computing Machinery, 2019, pp. 449-455. DOI: 10.1145/3287324.3287511.
Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J. D., & Penix, J. Using static analysis to find bugs. IEEE Software, vol. 25, no. 5, pp. 22–29. DOI: 10.1109/ms.2008.130.
Restrepo-Calle, F., Ramirez-Echeverry, J. & González, F. Using an interactive software tool for the formative and summative evaluation in a computer programming course: an experience report. Global Journal of Engineering Education, 2020, vol. 22, no. 3, pp. 174–185. Available at: https://www.researchgate.net/publication/346004432_Using_an_interactive_software_tool_for_the_formative_and_summative_evaluation_in_a_computer_programming_course_an_experience_report (accessed 09 June 2024).
Le, D. M. Model‐based automatic grading of object‐oriented programming assignments. Computer Applications in Engineering Education, 2021, vol. 30, iss. 2, pp. 435–457. DOI: 10.1002/cae.22464.
Liénardy, S., Leduc, L., Verpoorten, D., & Donnet, B. Café’: Automatic Correction and Feedback of Programming Challenges for a CS1 Course. Proceeding of the ACE'20: twenty-second australasian computing education conference, New York, NY, USA, Association for Computing Machinery, 2020, pp. 95–104. DOI: 10.1145/3373165.3373176.
Ahire, P., & Abraham, J. Perceive core logical blocks of a C program automatically for source code transformations. Proceeding of the 18-th Intelligent Systems Design and Applications conference, Springer, Cham, 2019, pp. 386–400. DOI: 10.1007/978-3-030-16657-1_36.
De Silva, D., Samarasekara, P., & Hettiarachchi, R. TechRxiv. A comparative analysis of static and dynamic code analysis techniques. 2023. DOI: 10.36227/techrxiv.22810664.v1. (unpublished).
Narayanan, S., & Simi, S. Source code plagiarism detection and performance analysis using fingerprint based distance measure method. Proceeding of the 2012 7th international conference on computer science & education (ICCSE 2012), Melbourne, VIC, Australia, 2012, pp. 1065–1068. DOI: 10.1109/iccse.2012.6295247.
Xu, W., & Ouyang, F. The application of AI technologies in STEM education: a systematic review from 2011 to 2021. International Journal of STEM Education, 2022, vol. 9, article no. 59. DOI: 10.1186/s40594-022-00377-5.
Barros, J. P. Assessment for computer programming courses: a short guide for the undecided teacher. Proceeding of the 14th international conference on computer supported education, Online Streaming, SciTePress, 2022, pp. 549–554. DOI: 10.5220/0011095800003182.
Samoaa, H. P., Bayram, F., Salza, P., & Leitner, P. A systematic mapping study of source code representation for deep learning in software engineering. IET Software, 2022, vol. 16, iss. 4, pp. 351–385. DOI: 10.1049/sfw2.12064.
Paiva, J., Leal, J., & Figueira, Á. Comparing semantic graph representations of source code: the case of automatic feedback on programming assignments. Computer Science and Information Systems, 2024, vol. 21, no. 1, pp. 117–142. DOI: 10.2298/csis230615004p.
Wojszczyk, R., Hapka, A., & Królikowski, T. Performance analysis of extracting object structure from source code. Procedia Computer Science, 2023, vol. 225, pp. 4065–4073. DOI: 10.1016/j.procs.2023.10.402.
Nguyen, A. T., & Hoang, V. D. Development of code evaluation system based on abstract syntax tree. Journal of Technical Education Science, 2024, vol. 19, no. 1, pp. 15–24. DOI: 10.54644/jte.2024.1514.
Ortin, F., Facundo, G., & Garcia, M. Analyzing syntactic constructs of Java programs with machine learning. Expert Systems With Applications, 2023, vol. 215, iss. C. DOI: 10.1016/j.eswa.2022.119398.
DOI: https://doi.org/10.32620/reks.2024.4.06
Refbacks
- There are currently no refbacks.