Impact of distortions in UAV images on quality and accuracy of object localization
Abstract
Keywords
Full Text:
PDFReferences
Dai, Y., Liu, D., Hu, G. & Yu, X. Radar Target Detection Algorithm Using Convolutional Neural Network to Process Graphically Expressed Range Time Series Signals. Sensors, 2022, no. 18, article no. 6868. DOI: 10.3390/s22186868.
Wen, X., Wang, J., Cheng, C., Zhang, F. & Pan, G. Underwater Side-Scan Sonar Target Detection: YOLOv7 Model Combined with Attention Mechanism and Scaling Factor. Remote Sensing, 2024, no. 16, article no. 2492. DOI: 10.3390/rs16132492.
Zhao, Q., Wu, Y. & Yuan, Y. Ship Target Detection in Optical Remote Sensing Images Based on E2YOLOX-VFL. Remote Sensing, 2024, no. 16, article no. 340. DOI: 10.3390/rs16020340.
Liu, S., Chen, P. & Woźniak, M. Image Enhancement-Based Detection with Small Infrared Targets. Remote Sensing, 2022, no. 13, article no. 3232. DOI: 10.3390/rs14133232.
Vivone, G., Addesso, P. & Ziemann, A. Editorial for Special Issue “Remote Sensing for Target Object Detection and Identification”. Remote Sensing, 2020, no. 1, article no. 196. DOI: 10.3390/rs12010196.
Zou, J., Zheng, H. & Wang, F. Real-Time Target Detection System for Intelligent Vehicles Based on Multi-Source Data Fusion. Sensors, 2023, no. 23, article no. 1823. DOI: 10.3390/s23041823.
Yang, R. & Yu, Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis. Frontiers in Oncology, 2021, vol. 11. DOI: 10.3389/fonc.2021.638182
Mittermayer, J., Younis, M., Metzig, R., Wollstadt, S., Marquez Martinez J. & Meta A. TerraSAR-X System Performance Characterization and Verification. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 2, pp. 660-676. DOI: 10.1109/TGRS.2009.2026742.
Džunda, M., Dzurovčin, P. & Melníková, L. Anti-Collision System for Small Civil Aircraft. Applied Sciences, 2022, no. 12, article no. 1648. DOI: 10.3390/app12031648.
Hayat, S., Yanmaz E. & Muzaffar R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 4, pp. 2624-2661. DOI: 10.1109/COMST.2016.2560343.
Dewan, R. & Rahman, K.F. A Survey on Applications of Unmanned Aerial Vehicles (UAVs). Recent Innovations in Computing, 2022, vol. 855. DOI: 10.1007/978-981-16-8892-8_8.
Vasilyeva, I., Lukin, V., Kharchenko, V. & Nereta, A. Combined processing of satellite and UAV data to increase the classification reliability. IntelITSIS’2023: 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, 2023, pp 539-552.
Fedorenko, G., Fesenko, H., Kharchenko, V., Kliushnikov, I. & Tolkunov I. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models. Radioelectronic and Computer Systems, 2023, vol. 106, no. 2, pp. 143-159. DOI: 10.32620/reks.2023.2.12.
Ramirez-Jaime, A., Pena-Pena, K., Arce, G. R., Harding, D., Stephen M. & MacKinnon J. HyperHeight LiDAR Compressive Sampling and Machine Learning Reconstruction of Forested Landscapes. IEEE Transactions on Geoscience and Remote Sensing, 2024, vol. 62, article no. 4402416, pp. 1-16. DOI: 10.1109/TGRS.2024.3356389.
Ieremeiev, O., Lukin V. & Vozel B. Combined No-Reference Image Quality Metric for UAV Applications. IEEE 2nd Ukrainian Microwave Week (UkrMW), 2022, pp. 638-643. DOI: 10.1109/UkrMW58013.2022.10037120.
Kim, J. H. & Sung, S. M. Quality Analysis of Unmanned Aerial Vehicle Images Using a Resolution Target. Applied Sciences, 2024, vol. 14, no. 5. DOI: 10.3390/app14052154.
Ahmad, A., Amira, K., Mawardy, M., Firdaus, S., Yazid, M., & Rahman, A. B. Noise and Restoration of UAV Remote Sensing Images. International Journal of Advanced Computer Science and Applications, 2020, vol. 11. DOI: 10.14569/IJACSA.2020.0111222.
Papić, V., Šolić, P., Milan, A., Gotovac, S. & Polić, M. High-Resolution Image Transmission from UAV to Ground Station for Search and Rescue Missions Planning. Applied Sciences, 2021, vol. 11, no. 5, article no. 2105. DOI: 10.3390/app11052105.
Wang, Y. Y. & Huang, D. Q. Compression for UAV reconnaissance images. Optics and Precision Engineering, 2014, vol. 22, no. 5, pp. 1363-1370. DOI: 10.3788/OPE.20142205.1363.
Abramova, V., Lukin, V., Abramov, S., Abramov, K. & Bataeva, E. Analysis of Statistical and Spatial Spectral Characteristics of Distortions in Lossy Image Compression. IEEE 2nd Ukrainian Microwave Week (UkrMW), 2022, pp. 644-649. DOI: 10.1109/UkrMW58013.2022.10036949.
Chatterjee, P. & Milanfar, P. Is Denoising Dead?. IEEE Transactions on Image Processing, 2010, vol. 19, no. 4, pp. 895-911. DOI: 10.1109/TIP.2009.2037087.
Chatterjee, P. & Milanfar, P. Patch-based near-optimal image denoising. IEEE Trans Image Process, 2012, vol. 21, no. 4, DOI: 10.1109/TIP.2011.217279.
Lukin, V., Abramov, S., Krivenko, S., Kurekin, A. & Pogrebnyak, O. Analysis of classification accuracy for pre-filtered multichannel remote sensing data. Journal of Expert Systems with Applications, 2013, vol. 40, pp. 6400-6411. DOI: 10.1016/j.eswa.2013.05.061.
Zabala, A. & Pons, X. Effects of lossy compression on remote sensing image classification of forest areas. International Journal of Applied Earth Observation and Geoinformation, 2011, vol. 13, no. 1, pp. 43-51. DOI: 10.1016/j.jag.2010.06.005.
Ozah, N. & Kolokolova, A. Compression Improves Image Classification Accuracy. Advances in Artificial Intelligence, 2019, vol. 11489. DOI: 10.1007/978-3-030-18305-9_55.
Tsekhmystro, R., Rubel, O. & Lukin, V. Study of methods for searching and localizing objects in images from aircraft using convolutional neural networks. Radioelectronic and Computer Systems, 2024, no. 1, pp. 87-98. DOI: 10.32620/reks.2024.1.08.
Adli, T., Bujaković, D., Bondžulić, B., Laidouni, M. Z. & Andrić, M. A Modified YOLOv5 Architecture for Aircraft Detection in Remote Sensing Images. Journal of the Indian Society of Remote Sensing, 2024. DOI: 10.1007/s12524-024-02033-7.
Qi, W. Object detection in high resolution optical image based on deep learning technique. Natural Hazards Research, 2022, vol. 2, no. 4, pp. 384-392. DOI: 10.1016/j.nhres.2022.10.002.
Shorten, C. & Khoshgoftaar, T. M. A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 2019, vol. 6, no. 60. DOI: 10.1186/s40537-019-0197-0.
Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T., Shlens, J. & Le, Q. V. Learning Data Augmentation Strategies for Object Detection. Computer Vision – ECCV 2020, 2020, vol. 12372. DOI: 10.1007/978-3-030-58583-9_34.
Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., & Ling, H. Detection and Tracking Meet Drones Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, vol. 44, no. 11, pp. 7380-7399. DOI: 10.1109/TPAMI.2021.3119563.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 658-666. DOI: 10.48550/arXiv.1902.09630.
Sokolova, M., Japkowicz, N. & Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. Advances in Artificial Intelligence, 2006, vol. 4304. DOI: 10.1007/11941439_114.
YOLOv5 by Ultralytics. Available at: https://zenodo.org/records/7347926. (accessed 25 Sep. 2024). DOI: 10.5281/zenodo.7347926.
Ren, S., He, K., Girshick, R., & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, pp. 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
Lin, T. Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, vol. 42, no. 2, pp. 318-327. DOI: 10.1109/TPAMI.2018.2858826.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & Berg, A. SSD: Single Shot MultiBox Detector. Lecture Notes in Computer Science, 2016, vol. 9905, pp. 21-37. DOI: 10.1007/978-3-319-46448-0_2
Tsekhmystro, R., Rubel, O. & Lukin, V. Investigation of the effect of object size on accuracy of human localization in images acquired from unmanned aerial vehicles. Aerospace Technic and Technology, 2024, no. 2, pp. 83-90. DOI: 10.32620/aktt.2024.2.09.
Tsekhmystro, R., Rubel, O. & Lukin, V. Study of the dependence of accuracy in vehicles search on the size of the object using UAV images. Aerospace Technic and Technology, 2024, no. 3, pp. 89-98. DOI: 10.32620/aktt.2024.3.08.
Cong, X., Li, S., Chen, F., Liu, C. & Meng, Y. A Review of YOLO Object Detection Algorithms based on Deep Learning. Frontiers in Computing and Intelligent Systems, 2023, vol. 4, no. 2, pp. 17-20. DOI: 10.54097/fcis.v4i2.9730.
Malakan, Z. M., Anwar, S., Hassan, G. M. & Mian, A. Sequential Storytelling Image Dataset (SSID). IEEE Dataport, 2023, DOI: 10.21227/dbr9-dq51.
Ting, K. M. Precision and Recall. Encyclopedia of Machine Learning, 2010. 781 p. DOI: 10.1007/978-0-387-30164-8_652.
Uss, M., Vozel, B., Chehdi, K. & Lukin, V. Maximum likelihood estimation of spatially correlated signal-dependent noise in hyperspectral images. Optical Engineering, 2012, vol. 51, no. 11, article no. 111712. DOI: 10.1117/1.OE.51.11.111712.
Colom, M. & Buades, A. Analysis and Extension of the PCA Method, Estimating a Noise Curve from a Single Image. Image Processing On Line, 2016, no. 6, pp. 365-390. DOI: 10.5201/ipol.2016.124.
Makarichev, V., Lukin, V. & Brysina, I. On the Impact of Discrete Atomic Compression on Image Classification by Convolutional Neural Networks. Computation, 2024, vol. 12, no. 9, article no. 176. DOI: 10.3390/computation12090176.
DOI: https://doi.org/10.32620/reks.2024.4.05
Refbacks
- There are currently no refbacks.