THE ANALYSIS OF THE TASKS AND ALGORITHMS OF DATA INTEGER PROCESSING IN THE RESIDUAL CLASSES SYSTEM

V. A. Krasnobayev, A. S. Yanko, V. N. Kurchanov, S. A. Koshman

Abstract


The coding of remainders number witch submitted the appropriate modules of residual classes system (RCS), made with data from complete system of the smallest non-negative residues (CSSNR) was showed in the article. In this aspect, CSSNR is the basis for the construction of non-positional code structure in RCS. Possible field of science and engineering, where there is an urgent need for fast, reliable and high-precision integer calculations were clarified and systematized in the paper. On the basis of studies of the properties of RCS were examined the advantages and disadvantages of using modular arithmetic (MA). Using the results of the analysis of problems of integer data and a set of positive attributes of MA, the classes of problems and algorithms, which using RCS, much more efficient binary positional numeral systems were defined in the article.

Keywords


residual classes system, modular arithmetic, positional numeral systems, complete system of the smallest non-negative residues, computer system and a data processing means witch represented in integer form, residual classes

Full Text:

PDF

References


Akushskij, I. Ja., Judickij, D. I. Mashinnaja Arifmetika V Ostatochnyh Klassah [Machine Arithmetic In Residual Classes]. Moscow, Sov. Radio Publ., 1968. 440 p.

Krasnobaev, V. A., Siora, A. A., Harchenko, V. S. Otkazoustojchivye Sistemy S VersionnoInformacionnoj Izbytochnost'ju V ASU TP [Fault Tolerance System With Versioning And Information Redundancy In ACS of TP]: monografija. Kharkiv, MON, NAU “KhAI” Publ., 2009. 320 p.

Matthew, Morgado. Modular arithmetic. – Available at: http://math.uchicago.edu/~may/REU2014/ REUPapers/Morgado.pdf (аccessed 10.09.2015).

Stewart, Ian. Concepts of Modern Mathematics. Dover Publications, Amazon Digital Services, Inc, 2012. 352 p.

Lance, Stefan. A survey of primality tests. Available at: http://math.uchicago.edu/~may/REU2014/ REUPapers/Lance.pdf (аccessed August 27, 2014).

Krasnobaev, V.A., Somov, S.V., Janko, A.S. Osnovnye svojstva nepozicionnoj sistemy schislenija [The main properties of the non-positional number system]. Sistemi upravlіnnja, navіgacії ta zv’jazku – Systems of control, navigation and communication, 2013, no. 1(25). – pp. 110–113.

Grandini, Daniele. Notes on Modular Arithmetic. – Available at: http://math.unm.edu/~daniele/ Notes%20on%20 Modular%20Arithmetic.pdf. – Spring 2013.

Krasnobaev, V. A., Koshman, S. A., Mavrina, M. A. Metod ispravlenija odnokratnyh oshibok dannyh, predstavlennyh kodom klassa vychetov [The method of correction of single errors witch submitted by the residue class]. Jelektronnoe modelirovanie Electronic modeling, 2013, vol. 35, no. 5, pp. 43–56.

Barsov, V. I., Soroka, L. S., Krasnobaev, V. A. Metodologija Parallel'noj Obrabotki Informacii V Moduljarnoj Sisteme Schislenija. [Methodology Of Parallel Information Processing By Modular Number System]. Kharkov, MON, UIPA Publ., 2009. 268 p.

Kornilov, A. I., Semenov, M. Ju., Lastochkin, O. V., Kalashnikov, V. S. Principy postroenija specializirovannyh vychislitelej s primeneniem moduljarnoj arifmetiki [Principles of building of specialized calculators with using modular arithmetic]. Trudy IPPM RAN «Problemy razrabotki perspektivnyh mikrojelektronnyh sistem» [“Problems Of Development Of Advanced Microelectronic Systems”]. Moscow, 2005, pp. 346-351.

Krasnobayev, V. A., Koshman, S. A., Mavrina, M. A. A method for increasing the reliability of verification of data represented in a residue number system. Cybernetics and Systems Analysis, November 2014, vol. 50, iss. 6. – pp. 969-976.


Refbacks

  • There are currently no refbacks.