APPROACHES TO THE CREATION OF A SOFTWARE AGENT BASED ON META-HEURISTIC AND ARTIFICIAL NEURAL NETWORKS
Abstract
Keywords
Full Text:
PDF (Українська)References
Lowe, R., Wu, Y., Tamar, A. etc. Multi-agent actor-critic for mixed cooperative competitive environments. In Advances in Neural Information Processing Systems, 2017, pp. 6382–6393.
Amir, O., Kamar, E., Kolobov, A., Grosz, B. Interactive teaching strategies for agent training. IJCAI'16 Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, pp. 804–811.
Wooldridge, M. An Introduction to MultiAgent Systems. Chichester, John Wiley & Sons, Inc., 2002. 348 p.
Maroua, N., Abdelghani, B., Abderrazak, J. etc. An improved multi agent particle swarm optimization to solveflexible job shop scheduling problem. CIE45 Proceedings Metz, France, 28-30 October 2015, pp. 1–9.
Khaykin, S. Neyronnyye seti: polnyy kurs [Neural networks: full course]. Moscow, Izdatelskiy dom «Viliams» Publ., 2006. 1104 p.
Song, W., Ma, W., Qiao, Y. Particle swarm optimization algorithm with environmental factors for clustering analysis. Soft Computing, 2017, vol. 21, no. 2, pp. 283–293.
Netjinda, N., Achalakul, T., Sirinaovakul, B. Particle swarm optimization inspired by starling flock behavior. Applied Soft Computing, 2015, vol. 35, pp. 411–422.
Armano, G., Farmani, M. Multiobjective clustering analysis using particle swarm optimization. Expert Systems with Applications, 2016, vol. 55, pp. 184–193.
Liu, X., Zhao, Y., Sun, M. An improved apriori algorithm based on an evolution-communication tissue-like p system with promoters and inhibitors. Discrete Dynamics in Nature and Society, 2017. Available at: https://www.hindawi.com/journals/ddns/2017/6978146/ (accessed 12.08.2018).
Subbotin, S. O., Olijny`k, A. O., Olijny`k, O. O. Neiteraty`vni, evolyucijni ta mul`ty`agentni metody` sy`ntezu: monografy`ya [Non-iterative, evolutionary and multi-agent synthesis methods]. Zaporizhzhya, ZNTU, 2009. 376 p.
Skobtsov, U. A., Fedorov, E. E. Metaevristiki [Metaheuristics]. Donetsk, Izd-vo «Noulidzh» (Donetskoye otdeleniye) Publ., 2013. 426 p.
Wang, D., Tan, D., Liu, L. Particle Swarm Optimization: An overview. Soft Computing, 2018. Available at: https://www.researchgate.net/publication/ 257722304_Particle_Swarm_Optimization_An_Overview. (accessed 12.08.2018).
Dor, A. El., Lemoine, D., Clerc, M. etc. Dynamic cluster in particle swarm optimization algorithm. Natural Computing, 2015, vol. 14, no. 4, pp. 655–672.
Fedorov, E. E. Iskusstvennyye neyronnyye seti [Artificial Neural Networks]. Krasnoarmeysk, DVNZ "DonNTU" Publ., 2016. 338 p.
Graves, A., Bellemare, M., Menick, J. etc. Automated curriculum learning for neural networks. In international conference on machine learning, 2017, pp. 1311–1320.
Sukhbaatar, S., Fergus, R. Learning Multiagent communication with backpropagation. In international conference on machine learning, 2016, pp. 2244–2252.
Bachman, P., Sordoni, A., Trischler, A. Learning algorithms for active learning. In international conference on machine learning, 2017, pp. 301–310.
DOI: https://doi.org/10.32620/reks.2019.1.06
Refbacks
- There are currently no refbacks.