Enhancing credit card fraud detection: the impact of oversampling rates and ensemble methods with diverse feature selection
Abstract
Keywords
Full Text:
PDFReferences
Rivera, K., Rohn, C., Donker, J., & Butter, C. Fighting fraud: A never-ending battle. PwC’s Global Economic Crime and Fraud Survey, 2020. 14 p. Available at: https://www.pwc.com/gx/en/forensics/gecs-2020/pdf/global-economic-crime-and-fraud-survey-2020.pdf. (accessed 1.08.2024).
Zhang, Y.-F., Lu, H.-L., Lin, H.-F., Qiao, X.-C., & Zheng, H. The optimized anomaly detection models based on an approach of dealing with imbalanced dataset for credit card fraud detection. Mobile Information Systems, 2022, no. 1, article no. 8027903. DOI: 10.1155/2022/8027903.
Li, L., Liu, Z., Chen, C., Zhang, Y.-L., Zhou, J., & Li, X. A time attention based fraud transaction detection framework. arXiv preprint. DOI: 10.48550/arXiv.1912.11760.
Kültür, Y., & Çağlayan, M. U. Hybrid approaches for detecting credit card fraud. Expert Systems, 2017, no. 34, article no. e12191. DOI: 10.1111/exsy.12191.
Kurshan, E., & Shen, H. Graph computing for financial crime and fraud detection: Trends, challenges and outlook. International Journal of Semantic Computing, 2020, vol. 14, no. 04, pp. 565-589. DOI: 10.1142/S1793351X20300022.
Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens, B. Apate: A novel approach for automated credit card transaction fraud detection using network-based extensions. Decision Support Systems, 2015, vol. 75, pp. 38-48. DOI: 10.1016/j.dss.2015.04.013.
Hossain, M. A., Khatun, M. S., Bhuiyan, R. A., & Taslim, M. Handling class imbalance in credit card fraud using various sampling techniques. American Journal of Multidisciplinary Research and Innovation (AJMRI), 2022, vol. 1, no. 4, pp. 1-6. DOI: 10.54536/ajmri.v1i4.633.
Ileberi, E., Sun, Y., & Wang, Z. Performance evaluation of machine learning methods for credit card fraud detection using SMOTE and AdaBoost. IEEE Access, 2021, vol. 9, pp. 165286-165294. DOI: 10.1109/ACCESS.2021.3134330.
Plakandaras, V., Gogas, P., Papadimitriou, T., & Tsamardinos, I. Credit card fraud detection with automated machine learning systems. Applied Artificial Intelligence, 2022, vol. 36, no. 1, article no. e2086354. DOI: 10.1080/08839514.2022.2086354.
Salekshahrezaee, Z., Leevy, J. L., & Khoshgoftaar, T. M. The effect of feature extraction and data sampling on credit card fraud detection. Journal of Big Data, 2023, vol. 10, no. 1, article no. 6. DOI: 10.1186/s40537-023-00684-w.
Fanai, H., & Abbasimehr, H. A novel combined approach based on deep autoencoder and deep classifiers for credit card fraud detection. Expert Systems with Applications, 2023, vol. 217, article no. 119562. DOI: 10.1016/j.eswa.2023.119562.
Buonaguidi, B., Mira, A., Bucheli, H., & Vitanis, V. Bayesian quickest detection of credit card fraud. Bayesian Analysis, 2022, vol. 17, no. 1, pp. 261-290. DOI: 10.1214/20-BA1254.
Ahmad, H., Kasasbeh, B., AL-Dabaybah, B., & Rawashdeh, E. EFN-SMOTE: An effective oversampling technique for credit card fraud detection by utilizing noise filtering and fuzzy C-means clustering. International Journal of Data and Network Science, 2023, vol. 7, no. 4, pp. 1025-1032. DOI: 10.5267/j.ijdns.2023.6.003.
Habibpour, M., Gharoun, H., Mehdipour, M., Tajally, A., Asgharnezhad, H., Shamsi, A., Khosravi, A., & Nahavandi, S. Uncertainty-aware credit card fraud detection using deep learning. Engineering Applications of Artificial Intelligence, 2023, vol. 123, article no. 106248. DOI: 10.1016/j.engappai.2023.106248.
Zhao, Z., & Bai, T. Financial fraud detection and prediction in listed companies using SMOTE and machine learning algorithms. Entropy, 2022, vol. 24, no. 8, article no. 1157. DOI: 10.3390/e24081157.
Mohsen, O. R., Nassreddine, G., & Massoud, M. Credit card fraud detector based on machine learning techniques. Journal of Computer Science and Technology Studies, 2023, vol. 5, no. 2, pp. 16-30. DOI: 10.32996/jcsts.2023.5.2.2.
Aburbeian, A. M., & Ashqar, H. I. Credit card fraud detection using enhanced random forest classifier for imbalanced data. In International Conference on Advances in Computing Research, 2023, Orlando, USA, Springer, pp. 605-616. DOI: 10.1007/978-3-031-33743-7_48.
Tripathy, N., Nayak, S. K., Godslove, J. F., Friday, I. K., & Dalai, S. S. Credit card fraud detection using logistic regression and SMOTE approach. International Journal of Computer and Communication Technology, 2022, vol. 8, no. 4, pp. 38-47. DOI: 10.47893/IJCCT.2022.1438.
Karthikeyan, T., Govindarajan, M., & Vijayakumar, V. An effective fraud detection using competitive swarm optimization based deep neural network. Measurement: Sensors, 2023, vol. 27, article no. 100793. DOI: 10.1016/j.measen.2023.100793.
Malik, E. F., Khaw, K. W., Belaton, B., Wong, W. P., & Chew, X. Y. Credit card fraud detection using a new hybrid machine learning architecture. Mathematics, 2022, vol. 10, no. 9, article no. 1480. DOI: 10.3390/math10091480.
Mienye, I. D., & Sun, Y. A deep learning ensemble with data resampling for credit card fraud detection. IEEE Access, 2023, vol. 11, pp. 30628-30640. DOI: 10.1109/ACCESS.2023.3262020.
Xu, B., Wang, Y., Liao, X., & Wang, K. Efficient fraud detection using deep boosting decision trees. Decision Support Systems, 2023, vol. 175, article no. 114037. DOI: 10.1016/j.dss.2023.114037.
Roseline, J. F., Naidu, G. B. S. R., Pandi, V. S., Rajasree, S. A. A., & Mageswari, N. Autonomous credit card fraud detection using machine learning approach. Computers and Electrical Engineering, 2022, vol. 102, article no. 108132. DOI: 10.1016/j.compeleceng.2022.108132.
Ileberi, E., Sun, Y., & Wang, Z. A machine learning based credit card fraud detection using the GA algorithm for feature selection. Journal of Big Data, 2022, vol. 9, no. 1, article no. 24. DOI: 10.1186/s40537-022-00573-8.
Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. A neural network ensemble with feature engineering for improved credit card fraud detection. IEEE Access, 2022, vol. 10, pp. 16400-16414. DOI: 10.1109/ACCESS.2022.3148298.
Chang, V., Doan, L. M. T., Di Stefano, A., Sun, Z., & Fortino, G. Digital payment fraud detection methods in digital ages and industry 4.0. Computers and Electrical Engineering, 2022, vol. 100, article no. 107734. DOI: 10.1016/j.compeleceng.2022.107734.
Shabbir, A., Shabir, M., Javed, A. R., Chakraborty, C., & Rizwan, M. Suspicious transaction detection in banking cyber-physical systems. Computers and Electrical Engineering, 2022, vol. 97, article no. 107596. DOI: 10.1016/j.compeleceng.2021.107596.
Cherif, A., Ammar, H., Kalkatawi, M., Alshehri, S., & Imine, A. Encoder–decoder graph neural network for credit card fraud detection. Journal of King Saud University-Computer and Information Sciences, 2024, vol. 36, no. 3, article no. 102003. Elsevier. DOI: 10.1016/j.jksuci.2024.102003.
Leevy, J. L., Hancock, J., & Khoshgoftaar, T. M. Comparative analysis of binary and one-class classification techniques for credit card fraud data. Journal of Big Data, 2023, vol. 10, no. 1, article no. 118. DOI: 10.1186/s40537-023-00794-5.
Alamri, M., & Ykhlef, M. Hybrid under-sampling and oversampling for handling imbalanced credit card data. IEEE Access, 2024, vol. 12, pp. 14050-14060. DOI: 10.1109/ACCESS.2024.3357091.
Khalid, A. R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J., & Adejoh, J. Enhancing credit card fraud detection: an ensemble machine learning approach. Big Data and Cognitive Computing, 2024, vol. 8, no. 1, article no. 6. DOI: 10.3390/bdcc8010006.
Dhandore, D., Agrawal, C., & Meena, P. Enhancing credit card fraud detection through advanced ensemble learning techniques and deep learning integration. International Journal of Engineering Applied Science and Management, 2024, vol. 5, no. 9, pp. 1-9. Paper ID: 2024/IJEASM/5/2024/2185.
Zhu, M., Zhang, Y., Gong, Y., Xu, C., & Xiang, Y. Enhancing credit card fraud detection: A neural network and SMOTE integrated approach. arXiv preprint/ DOI: 10.48550/arXiv.2405.00026.
Credit card fraud detection. Available at: https://www.kaggle.com/mlg-ulb/creditcardfraud. (accessed 12 June 2024).
DOI: https://doi.org/10.32620/reks.2025.1.06
Refbacks
- There are currently no refbacks.
