A comparative study between price-driven and mechanistic moving averages using causal analysis on bitcoin historical data
Abstract
Keywords
Full Text:
PDFReferences
Resta, M., Pagnottoni, P., & De Giuli, M. E. Technical Analysis on the Bitcoin Market: Trading Opportunities or Investors’ Pitfall? Risks, 2020, vol. 8, no. 2, article no. 44. DOI: 10.3390/risks8020044.
Edwards, R. D., Magee, J., & Bassetti, W.C. Technical analysis of stock trends. CRC press, 2018. 686 p.
Lai, M. M., & Lau, S. H. The profitability of the simple moving averages and trading range breakout in the Asian stock markets. Journal of Asian Economics, 2006, vol. 17, iss. 1, pp. 144-170. DOI: 10.1016/j.asieco.2005.12.001.
Ausloos, M., & Ivanova, K. Mechanistic approach to generalized technical analysis of share prices and stock market indices. The European Physical Journal B - Condensed Matter and Complex Systems, 2002, vol. 27, pp. 177-187. DOI: 10.1140/epjb/e20020144.
Nogueira, A. R., Pugnana, A., Ruggieri, S., Pedreschi, D., & Gama, J. Methods and tools for causal discovery and causal inference. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, vol. 12, iss. 2, article no. e1449. DOI: 10.1002/widm.1449.
Mokni, K., & Ajmi, A. N. Cryptocurrencies vs. US dollar: Evidence from causality in quantiles analysis. Economic Analysis and Policy, 2021, vol. 69, pp. 238-252. DOI: 10.1016/j.eap.2020.12.011.
Hyndman, R. International Encyclopedia of Statistical Science. Springer, 2011. 1673 p.
Mazumder, S., Neogy, S., & Das, S. Simple Moving Average (SMA) Crossover Strategy with Buy Sell Indicator. Advancement in Management and Technology (AMT), 2023, vol. 3, iss. 4, pp. 26-40. DOI: 10.46977/apjmt.2023.v03i04.004.
Ejder, U., & Özel, S. A. A novel distance-based moving average model for improvement in the predictive accuracy of financial time series. Borsa Istanbul Review, 2024, vol. 24, iss. 2, pp. 376-397. DOI: 10.1016/j.bir.2024.01.011.
Katz, H., Brusch, K. T., & Weiss, R. E. A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times. International Journal of Forecasting, 2024, vol. 40, iss. 4, pp. 1556-1567. DOI: 10.1016/j.ijforecast.2024.01.004.
Abbondante, P. Trading Volume and Stock Indices: A Test of Technical Analysis. American Journal of Economics and Business Administration, 2010, vol. 2, no. 3, pp. 287-292. DOI: 10.3844/ajebasp.2010.287.292.
Mitchell, D., Białkowski, J., & Tompaidis, S. Volume-weighted average price tracking: A theoretical and empirical study. IISE Transactions, 2019, vol. 52, iss. 8, pp. 864-889. DOI: 10.1080/24725854.2019.1688896.
Moraffah, R., Sheth, P., Karami, M., Bhattacharya, A., Wang, Q., Tahir, A., Raglin, A., & Liu, H. Causal inference for time series analysis: problems, methods and evaluation. Knowledge and Information Systems, 2021, vol. 63, pp. 3041-3085. DOI: 10.1007/s10115-021-01621-0.
Liu , J., Li, H., Hai, M., & Zhang, Y. A study of factors influencing financial stock prices based on causal inference. Procedia Computer Science, 2023, vol. 221, pp. 861-869. DOI: 10.1016/j.procs.2023.08.062.
Dastgir, S., Demir, E., Downing, G., Gozgor, G., & Lau, C. K. M. The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test. Finance Research Letters, 2019, vol. 28, pp. 160-164. DOI: 10.1016/j.frl.2018.04.019.
Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E.W.T., & Liu, M. A causal feature selection algorithm for stock prediction modeling. Neurocomputing, 2014, vol. 142, pp. 48-59. DOI: 10.1016/j.neucom.2014.01.057.
CCXT – CryptoCurrency eXchange Trading Library. Available at: https://github.com/ccxt/ccxt (аccessed 15.11.2024).
Ali, Z., Bhaskar, S. B., & Sudheesh, K. Descriptive Statistics: Measures of Central Tendency, Dispersion, Correlation and Regression. Airway, 2019, vol. 2, iss. 3, pp. 120-125. DOI: 10.4103/ARWY.ARWY_37_19.
Al-kassab, M., & Majeed, A. The use of two-sample t-test in the real data. Advances and Applications in Statistics, 2022, vol. 81, pp. 13-22. DOI: 10.17654/0972361722071.
Jin, K., Liu, X., & Zhang, W. The Analysis of Factors Affecting Bitcoin Price. BCP Business & Management, 2022, vol. 24, pp. 23-33. DOI: 10.54691/bcpbm.v24i.1423.
Zverev A. I. Handbook of Filter Synthesis. Wiley, 1967. 592 p.
Rosenbaum, R. R., & Rubin, D. B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika, 1983, vol. 70, iss. 1, pp. 41-55. DOI:10.1093/biomet/70.1.41.
Rosenbaum, P. R., & Rubin, D. B. Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. Journal of the American Statistical Association, 1984, vol. 79, no. 387, pp. 516-524. DOI: 10.2307/2288398.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 2018, vol. 21, iss. 1, pp. 1-68. DOI: 10.1111/ectj.12097.
Naser, M. Z., & Çiftçioğlu, A. Ö. Causal discovery and inference for evaluating fire resistance of structural members through causal learning and domain knowledge. Structural Concrete, 2023, vol. 24, iss. 3, pp. 3314-3328. DOI: 10.1002/suco.202200525.
Baillie, R. T., & DeGennaro, R. P. Stock Returns and Volatility. The Journal of Financial and Quantitative Analysis, 1990, vol. 25, no. 2, pp. 203-214. DOI: 10.2307/2330824.
Tsapro, I., V. Adaptation of the mechanistic approach to the analysis of the cryptocurrency market. Connectivity, 2023, no. 1, pp. 47-51. DOI: 10.31673/2412-9070.2023.014647.
DOI: https://doi.org/10.32620/reks.2025.1.03
Refbacks
- There are currently no refbacks.
