A theoretical framework for agent-based modelling of infectious disease dynamics under misinformation and vaccine hesitancy

Dmytro Chumachenko

Abstract


The relevance of this study stems from the growing importance of modelling not only the biological transmission of infectious diseases but also the behavioural and informational factors that shape real-world epidemic dynamics. The subject of the research is the development of an agent-based simulation framework capable of capturing the complex interactions between epidemiological processes, vaccination behaviour, and misinformation propagation. The study aims to propose and evaluate a modular, theoretically grounded model that simulates the spread of infection while accounting for belief-driven decision-making and dynamic social influence. To achieve this, the tasks included analyzing the current state of agent-based epidemic models, formalizing a system architecture with cognitive and logistical subsystems, and conducting scenario-based simulations to explore the effects of misinformation and behavioural resistance on vaccination uptake and epidemic outcomes. The methodology is based on a discrete-time SEIRDV structure extended with agent-level belief states, social influence mechanisms, and dynamic vaccination decisions. The model was implemented in Python and tested through a case study simulating a COVID-like outbreak in a synthetic population. The results demonstrate that even modest behavioural resistance can significantly increase mortality and delay epidemic control, while counter-misinformation interventions if applied early and at sufficient intensity, can improve vaccine coverage and reduce disease burden. The study concludes that integrating behavioural and informational dynamics into epidemic models provides a more realistic and policy-relevant tool for analyzing communication strategies, vaccine rollout scenarios, and public health interventions under uncertainty.

Keywords


epidemic model; epidemic process; epidemic simulation; simulation; agent-based simulation; misinformation; vaccine hesitancy

Full Text:

PDF

References


Kermack, W.O., & McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, vol. 115, pp. 700–721.

Gatto, A., Accarino, G., Aloisi, V., Immorlano, F., Donato, F., & Aloisio, G. Limits of Compartmental Models and New Opportunities for Machine Learning: A Case Study to Forecast the Second Wave of COVID-19 Hospitalizations in Lombardy, Italy. Informatics, 2021, vol. 8, article no. 57. DOI: 10.3390/informatics8030057.

Tracy, M., Cerdá, M., & Keyes, K. M. Agent-Based Modeling in Public Health: Current Applications and Future Directions. Annual Review of Public Health, 2018, vol. 39, pp. 77–94. DOI: 10.1146/annurev-publhealth-040617-014317.

Wang, P., Zheng, X., & Liu, H. Simulation and Forecasting Models of COVID-19 Taking into Account Spatio-Temporal Dynamic Characteristics: A Review. Frontiers in Public Health, 2022, vol. 10, article no. 1033432. DOI: 10.3389/fpubh.2022.1033432.

Fair, K.R., Karatayev, V. A., Anand, M., & Bauch, C. T. Estimating COVID-19 Cases and Deaths Prevented by Non-Pharmaceutical Interventions, and the Impact of Individual Actions: A Retrospective Model-Based Analysis. Epidemics, 2022, vol. 39, article no. 100557. DOI: 10.1016/j.epidem.2022.100557.

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Núñez, R. C., Cohen, J. A., Selvaraj, P., Hagedorn, B., & et al. Covasim: An Agent-Based Model of COVID-19 Dynamics and Interventions. PLOS Computational Biology, 2021, vol. 17, article no. e1009149. DOI: 10.1371/journal.pcbi.1009149.

do Nascimento, I. J. B., Pizarro, A. B., Almeida, J., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. Infodemics and Health Misinformation: A Systematic Review of Reviews. Bulletin of the World Health Organization, 2022, vol. 100, pp. 544–561. DOI: 10.2471/blt.21.287654.

Briand, S.C., Cinelli, M., Nguyen, T., Lewis, R., Prybylski, D., Valensise, C.M., Colizza, V., Tozzi, A.E., Perra, N., Baronchelli, A., & et al. Infodemics: A New Challenge for Public Health. Cell, 2021, vol. 184, pp. 6010–6014. DOI: 10.1016/j.cell.2021.10.031.

van der Linden, S. Misinformation: Susceptibility, Spread, and Interventions to Immunize the Public. Nature Medicine, 2022, vol. 28, pp. 460–467. DOI: 10.1038/s41591-022-01713-6.

Zakharchenko, O., Avramenko, R., Zakharchenko, A., Korobchuk, A., Fedushko, S., Syerov, Y., & Trach, O. Multifaceted Nature of Social Media Content Propagating COVID-19 Vaccine Hesitancy: Ukrainian Case. Procedia Computer Science, 2022, vol. 198, pp. 682–687. DOI: 10.1016/j.procs.2021.12.306.

Mochurad, L., Dereviannyi, A., & Antoniv, U. Classification of X-Ray Images of the Chest Using Convolutional Neural Networks. CEUR Workshop Proceedings, 2021, vol. 3038, pp. 269–282.

Izonin, I., Tkachenko, R., Yemets, K., & Havryliuk, M. An Interpretable Ensemble Structure with a Non-Iterative Training Algorithm to Improve the Predictive Accuracy of Healthcare Data Analysis. Scientific Reports, 2024, vol. 14, article no. 12947. DOI: 10.1038/s41598-024-61776-y.

Nitzsche, C., & Simm, S. Agent-Based Modeling to Estimate the Impact of Lockdown Scenarios and Events on a Pandemic Exemplified on SARS-CoV-2. Scientific Reports, 2024, vol. 14, article no. 13391. DOI: 10.1038/s41598-024-63795-1.

Chumachenko, D., Bazilevych, K., Butkevych, M., Meniailov, I., Parfeniuk, Y., Sidenko, I., & Chumachenko, T. Methodology for Assessing the Impact of Emergencies on the Spread of Infectious Diseases. Radioelectronic and Computer Systems, 2024, vol. 2024, iss. 3, pp. 6–26. DOI: 10.32620/reks.2024.3.01.

Rosenstrom, E. T., Ivy, J. S., Mayorga, M. E., & Swann, J. L. COVSIM: A Stochastic Agent-Based COVID-19 SIMulation Model for North Carolina. Epidemics, 2024, vol. 46, article no. 100752. DOI: 10.1016/j.epidem.2024.100752.

Nemiche, M., Timouyas, M., Regragui, Y., & Bezza, H. Dynamic Agent-Based Model for COVID-19 Epidemic Spread Using Social Network Information. Lecture Notes in Networks and Systems, 2024, vol. 905, pp. 436–445. DOI: 10.1007/978-3-031-52385-4_42.

Ebrahimi, A. H., Alesheikh, A. A., Hooshangi, N., Sharif, M., & Mollalo, A. Modeling COVID-19 Transmission in Closed Indoor Settings: An Agent-Based Approach with Comprehensive Sensitivity Analysis. Information, 2024, vol. 15, article no. 362. DOI: 10.3390/info15060362.

Cuevas, E. An Agent-Based Model to Evaluate the COVID-19 Transmission Risks in Facilities. Computers in Biology and Medicine, 2020, vol. 121, article no. 103827. DOI: 10.1016/j.compbiomed.2020.103827.

Najmi, A., Nazari, S., Safarighouzhdi, F., Miller, E.J., MacIntyre, R., & Rashidi, T. H. Easing or Tightening Control Strategies: Determination of COVID-19 Parameters for an Agent-Based Model. Transportation, 2021, vol. 49, pp. 1265–1293. DOI: 10.1007/s11116-021-10210-7.

Gostoli, U., Silverman, E. Self-Isolation and Testing Behaviour during the COVID-19 Pandemic: An Agent-Based Model. Artificial Life, 2023, vol. 29, pp. 94–117. DOI: 10.1162/artl_a_00392.

Qiao, Q., Cheung, C., Yunusa‐Kaltungo, A., Manu, P., Cao, R., & Yuan, Z. An Interactive Agent-Based Modelling Framework for Assessing COVID-19 Transmission Risk on Construction Site. Safety Science, 2023, vol. 168, article no. 106312. DOI: 10.1016/j.ssci.2023.106312.

Olszewski, R., Palka, P., & Wendland, A. Agent-Based Modeling as a Tool for Predicting the Spatial-Temporal Diffusion of the COVID-19 Pandemic. 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) 2021, 2021, pp. 11–15. DOI: 10.1109/ieem50564.2021.9672878.

Bhattacharya, P., Machi, D., Chen, J., Hoops, S., Lewis, B., Mortveit, H., Venkatramanan, S., Wilson, M. L., Marathe, A., Porebski, P., & et al. AI-Driven Agent-Based Models to Study the Role of Vaccine Acceptance in Controlling COVID-19 Spread in the US. 2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 1566–1574. DOI: 10.1109/bigdata52589.2021.9671811.

Bongolan, V. P., Ang, K. K., Celeste, J. J., Minoza, J. M., Caoili, S., Rivera, R. L., de Castro, R. COVID-19 Agent-Based Model: An Epidemiological Simulator Applied in Vaccination Scenarios for Quezon City, Philippines. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2021, pp. 65–70. DOI: 10.5194/isprs-archives-xlvi-4-w6-2021-65-2021.

Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., & Lipsitch, M. Projecting the Transmission Dynamics of SARS-CoV-2 through the Postpandemic Period. Science, 2020, vol. 368, pp. 860–868. DOI: 10.1126/science.abb5793.

Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 2020, vol. 172, pp. 577–582. DOI: 10.7326/M20-0504.

Mohammed, I., Nauman, A., Paul, P., Ganesan, S., Chen, K.-H., Jalil, S. M. S., Jaouni, S. H., Kawas, H., Khan, W. A., Vattoth, A. L., & et al. The Efficacy and Effectiveness of the COVID-19 Vaccines in Reducing Infection, Severity, Hospitalization, and Mortality: A Systematic Review. Human Vaccines & Immunotherapeutics, 2022, vol. 18, article no. 2027160. DOI: 10.1080/21645515.2022.2027160.

Chumachenko, D., Chumachenko, T., Kirinovych, N., Meniailov, I., Muradyan, O., Salun, O. Barriers of COVID-19 Vaccination in Ukraine during the War: The Simulation Study Using ARIMA Model. Radioelectronic and Computer Systems, 2022, vol. 2022, iss. 3, pp. 20–32. DOI: 10.32620/reks.2022.3.02.

Zheng, C., Shao, W., Chen, X., Zhang, B., Wang, G., Zhang, W. Real-World Effectiveness of COVID-19 Vaccines: A Literature Review and Meta-Analysis. International Journal of Infectious Diseases, 2022, vol. 114, pp. 252–260. DOI: 10.1016/j.ijid.2021.11.009.

Loomba, S., de Figueiredo, A., Piatek, S.J., de Graaf, K., & Larson, H. J. Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. Nature Human Behaviour, 2021, vol. 5, pp. 337–348. DOI: 10.1038/s41562-021-01056-1.

Roozenbeek, J., Schneider, C. R., Dryhurst, S., Kerr, J., Freeman, A. L. J., Recchia, G., van der Bles, A.M., & van der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. Royal Society Open Science, 2020, vol. 7, article no. 201199. DOI: 10.1098/rsos.201199.

Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. The Echo Chamber Effect on Social Media. Proceedings of the National Academy of Sciences, 2021, vol. 118, article no. e2023301118. DOI: 10.1073/pnas.2023301118.

Betsch, C., Schmid, P., Heinemeier, D., Korn, L., Holtmann, C., & Böhm, R. Beyond Confidence: Development of a Measure Assessing the 5C Psychological Antecedents of Vaccination. PLOS ONE, 2018, vol. 13, article no. e0208601. DOI: 10.1371/journal.pone.0208601.

Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. Experimental Evidence for Tipping Points in Social Convention. Science, 2018, vol. 360, pp. 1116–1119. DOI: 10.1126/science.aas8827.

de Figueiredo, A., & Larson, H.J. Exploratory Study of the Global Intent to Accept COVID-19 Vaccinations. Communications Medicine, 2021, vol. 1, article no. 30. DOI: 10.1038/s43856-021-00027-x.

Acharya, K. P., Ghimire, T. R., & Subramanya, S.H. Access to and Equitable Distribution of COVID-19 Vaccine in Low-Income Countries. Npj Vaccines, 2021, vol. 6, article no. 54. DOI: 10.1038/s41541-021-00323-6.

Burki, T. Equitable Distribution of COVID-19 Vaccines. The Lancet Infectious Diseases, 2021, vol. 21, pp. 33–34. DOI: 10.1016/s1473-3099(20)30949-x.

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., Rand, D. G. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychological Science, 2020, vol. 31, pp. 770–780. DOI: 10.1177/0956797620939054.

Lin, C., Tu, P., & Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines, 2020, vol. 9, article no. 16. DOI: 10.3390/vaccines9010016.

Murphy, J., Vallières, F., Bentall, R.P., Shevlin, M., McBride, O., Hartman, T.K., McKay, R., Bennett, K., Mason, L., Gibson-Miller, J., & et al. Psychological Characteristics Associated with COVID-19 Vaccine Hesitancy and Resistance in Ireland and the United Kingdom. Nature Communications, 2021, vol. 12, article no. 29. DOI: 10.1038/s41467-020-20226-9.

Nyhan, B., & Reifler, J. The Roles of Information Deficits and Identity Threat in the Prevalence of Misperceptions. Journal of Elections, Public Opinion and Parties, 2018, vol. 29, pp. 222–244. DOI: 10.1080/17457289.2018.1465061.

Vraga, E. K., & Bode, L. Correction as a Solution for Health Misinformation on Social Media. American Journal of Public Health, 2020, vol. 110, pp. S278–S280. DOI: 10.2105/ajph.2020.305916.

van der Linden, S., Roozenbeek, J., & Compton, J. Inoculating against Fake News about COVID-19. Frontiers in Psychology, 2020, vol. 11, article no. 566790. DOI: 10.3389/fpsyg.2020.566790.




DOI: https://doi.org/10.32620/reks.2025.1.01

Refbacks

  • There are currently no refbacks.