A theoretical framework for agent-based modelling of infectious disease dynamics under misinformation and vaccine hesitancy
Abstract
Keywords
Full Text:
PDFReferences
Kermack, W.O., & McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, vol. 115, pp. 700–721.
Gatto, A., Accarino, G., Aloisi, V., Immorlano, F., Donato, F., & Aloisio, G. Limits of Compartmental Models and New Opportunities for Machine Learning: A Case Study to Forecast the Second Wave of COVID-19 Hospitalizations in Lombardy, Italy. Informatics, 2021, vol. 8, article no. 57. DOI: 10.3390/informatics8030057.
Tracy, M., Cerdá, M., & Keyes, K. M. Agent-Based Modeling in Public Health: Current Applications and Future Directions. Annual Review of Public Health, 2018, vol. 39, pp. 77–94. DOI: 10.1146/annurev-publhealth-040617-014317.
Wang, P., Zheng, X., & Liu, H. Simulation and Forecasting Models of COVID-19 Taking into Account Spatio-Temporal Dynamic Characteristics: A Review. Frontiers in Public Health, 2022, vol. 10, article no. 1033432. DOI: 10.3389/fpubh.2022.1033432.
Fair, K.R., Karatayev, V. A., Anand, M., & Bauch, C. T. Estimating COVID-19 Cases and Deaths Prevented by Non-Pharmaceutical Interventions, and the Impact of Individual Actions: A Retrospective Model-Based Analysis. Epidemics, 2022, vol. 39, article no. 100557. DOI: 10.1016/j.epidem.2022.100557.
Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Núñez, R. C., Cohen, J. A., Selvaraj, P., Hagedorn, B., & et al. Covasim: An Agent-Based Model of COVID-19 Dynamics and Interventions. PLOS Computational Biology, 2021, vol. 17, article no. e1009149. DOI: 10.1371/journal.pcbi.1009149.
do Nascimento, I. J. B., Pizarro, A. B., Almeida, J., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. Infodemics and Health Misinformation: A Systematic Review of Reviews. Bulletin of the World Health Organization, 2022, vol. 100, pp. 544–561. DOI: 10.2471/blt.21.287654.
Briand, S.C., Cinelli, M., Nguyen, T., Lewis, R., Prybylski, D., Valensise, C.M., Colizza, V., Tozzi, A.E., Perra, N., Baronchelli, A., & et al. Infodemics: A New Challenge for Public Health. Cell, 2021, vol. 184, pp. 6010–6014. DOI: 10.1016/j.cell.2021.10.031.
van der Linden, S. Misinformation: Susceptibility, Spread, and Interventions to Immunize the Public. Nature Medicine, 2022, vol. 28, pp. 460–467. DOI: 10.1038/s41591-022-01713-6.
Zakharchenko, O., Avramenko, R., Zakharchenko, A., Korobchuk, A., Fedushko, S., Syerov, Y., & Trach, O. Multifaceted Nature of Social Media Content Propagating COVID-19 Vaccine Hesitancy: Ukrainian Case. Procedia Computer Science, 2022, vol. 198, pp. 682–687. DOI: 10.1016/j.procs.2021.12.306.
Mochurad, L., Dereviannyi, A., & Antoniv, U. Classification of X-Ray Images of the Chest Using Convolutional Neural Networks. CEUR Workshop Proceedings, 2021, vol. 3038, pp. 269–282.
Izonin, I., Tkachenko, R., Yemets, K., & Havryliuk, M. An Interpretable Ensemble Structure with a Non-Iterative Training Algorithm to Improve the Predictive Accuracy of Healthcare Data Analysis. Scientific Reports, 2024, vol. 14, article no. 12947. DOI: 10.1038/s41598-024-61776-y.
Nitzsche, C., & Simm, S. Agent-Based Modeling to Estimate the Impact of Lockdown Scenarios and Events on a Pandemic Exemplified on SARS-CoV-2. Scientific Reports, 2024, vol. 14, article no. 13391. DOI: 10.1038/s41598-024-63795-1.
Chumachenko, D., Bazilevych, K., Butkevych, M., Meniailov, I., Parfeniuk, Y., Sidenko, I., & Chumachenko, T. Methodology for Assessing the Impact of Emergencies on the Spread of Infectious Diseases. Radioelectronic and Computer Systems, 2024, vol. 2024, iss. 3, pp. 6–26. DOI: 10.32620/reks.2024.3.01.
Rosenstrom, E. T., Ivy, J. S., Mayorga, M. E., & Swann, J. L. COVSIM: A Stochastic Agent-Based COVID-19 SIMulation Model for North Carolina. Epidemics, 2024, vol. 46, article no. 100752. DOI: 10.1016/j.epidem.2024.100752.
Nemiche, M., Timouyas, M., Regragui, Y., & Bezza, H. Dynamic Agent-Based Model for COVID-19 Epidemic Spread Using Social Network Information. Lecture Notes in Networks and Systems, 2024, vol. 905, pp. 436–445. DOI: 10.1007/978-3-031-52385-4_42.
Ebrahimi, A. H., Alesheikh, A. A., Hooshangi, N., Sharif, M., & Mollalo, A. Modeling COVID-19 Transmission in Closed Indoor Settings: An Agent-Based Approach with Comprehensive Sensitivity Analysis. Information, 2024, vol. 15, article no. 362. DOI: 10.3390/info15060362.
Cuevas, E. An Agent-Based Model to Evaluate the COVID-19 Transmission Risks in Facilities. Computers in Biology and Medicine, 2020, vol. 121, article no. 103827. DOI: 10.1016/j.compbiomed.2020.103827.
Najmi, A., Nazari, S., Safarighouzhdi, F., Miller, E.J., MacIntyre, R., & Rashidi, T. H. Easing or Tightening Control Strategies: Determination of COVID-19 Parameters for an Agent-Based Model. Transportation, 2021, vol. 49, pp. 1265–1293. DOI: 10.1007/s11116-021-10210-7.
Gostoli, U., Silverman, E. Self-Isolation and Testing Behaviour during the COVID-19 Pandemic: An Agent-Based Model. Artificial Life, 2023, vol. 29, pp. 94–117. DOI: 10.1162/artl_a_00392.
Qiao, Q., Cheung, C., Yunusa‐Kaltungo, A., Manu, P., Cao, R., & Yuan, Z. An Interactive Agent-Based Modelling Framework for Assessing COVID-19 Transmission Risk on Construction Site. Safety Science, 2023, vol. 168, article no. 106312. DOI: 10.1016/j.ssci.2023.106312.
Olszewski, R., Palka, P., & Wendland, A. Agent-Based Modeling as a Tool for Predicting the Spatial-Temporal Diffusion of the COVID-19 Pandemic. 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) 2021, 2021, pp. 11–15. DOI: 10.1109/ieem50564.2021.9672878.
Bhattacharya, P., Machi, D., Chen, J., Hoops, S., Lewis, B., Mortveit, H., Venkatramanan, S., Wilson, M. L., Marathe, A., Porebski, P., & et al. AI-Driven Agent-Based Models to Study the Role of Vaccine Acceptance in Controlling COVID-19 Spread in the US. 2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 1566–1574. DOI: 10.1109/bigdata52589.2021.9671811.
Bongolan, V. P., Ang, K. K., Celeste, J. J., Minoza, J. M., Caoili, S., Rivera, R. L., de Castro, R. COVID-19 Agent-Based Model: An Epidemiological Simulator Applied in Vaccination Scenarios for Quezon City, Philippines. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2021, pp. 65–70. DOI: 10.5194/isprs-archives-xlvi-4-w6-2021-65-2021.
Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., & Lipsitch, M. Projecting the Transmission Dynamics of SARS-CoV-2 through the Postpandemic Period. Science, 2020, vol. 368, pp. 860–868. DOI: 10.1126/science.abb5793.
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 2020, vol. 172, pp. 577–582. DOI: 10.7326/M20-0504.
Mohammed, I., Nauman, A., Paul, P., Ganesan, S., Chen, K.-H., Jalil, S. M. S., Jaouni, S. H., Kawas, H., Khan, W. A., Vattoth, A. L., & et al. The Efficacy and Effectiveness of the COVID-19 Vaccines in Reducing Infection, Severity, Hospitalization, and Mortality: A Systematic Review. Human Vaccines & Immunotherapeutics, 2022, vol. 18, article no. 2027160. DOI: 10.1080/21645515.2022.2027160.
Chumachenko, D., Chumachenko, T., Kirinovych, N., Meniailov, I., Muradyan, O., Salun, O. Barriers of COVID-19 Vaccination in Ukraine during the War: The Simulation Study Using ARIMA Model. Radioelectronic and Computer Systems, 2022, vol. 2022, iss. 3, pp. 20–32. DOI: 10.32620/reks.2022.3.02.
Zheng, C., Shao, W., Chen, X., Zhang, B., Wang, G., Zhang, W. Real-World Effectiveness of COVID-19 Vaccines: A Literature Review and Meta-Analysis. International Journal of Infectious Diseases, 2022, vol. 114, pp. 252–260. DOI: 10.1016/j.ijid.2021.11.009.
Loomba, S., de Figueiredo, A., Piatek, S.J., de Graaf, K., & Larson, H. J. Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. Nature Human Behaviour, 2021, vol. 5, pp. 337–348. DOI: 10.1038/s41562-021-01056-1.
Roozenbeek, J., Schneider, C. R., Dryhurst, S., Kerr, J., Freeman, A. L. J., Recchia, G., van der Bles, A.M., & van der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. Royal Society Open Science, 2020, vol. 7, article no. 201199. DOI: 10.1098/rsos.201199.
Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. The Echo Chamber Effect on Social Media. Proceedings of the National Academy of Sciences, 2021, vol. 118, article no. e2023301118. DOI: 10.1073/pnas.2023301118.
Betsch, C., Schmid, P., Heinemeier, D., Korn, L., Holtmann, C., & Böhm, R. Beyond Confidence: Development of a Measure Assessing the 5C Psychological Antecedents of Vaccination. PLOS ONE, 2018, vol. 13, article no. e0208601. DOI: 10.1371/journal.pone.0208601.
Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. Experimental Evidence for Tipping Points in Social Convention. Science, 2018, vol. 360, pp. 1116–1119. DOI: 10.1126/science.aas8827.
de Figueiredo, A., & Larson, H.J. Exploratory Study of the Global Intent to Accept COVID-19 Vaccinations. Communications Medicine, 2021, vol. 1, article no. 30. DOI: 10.1038/s43856-021-00027-x.
Acharya, K. P., Ghimire, T. R., & Subramanya, S.H. Access to and Equitable Distribution of COVID-19 Vaccine in Low-Income Countries. Npj Vaccines, 2021, vol. 6, article no. 54. DOI: 10.1038/s41541-021-00323-6.
Burki, T. Equitable Distribution of COVID-19 Vaccines. The Lancet Infectious Diseases, 2021, vol. 21, pp. 33–34. DOI: 10.1016/s1473-3099(20)30949-x.
Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., Rand, D. G. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychological Science, 2020, vol. 31, pp. 770–780. DOI: 10.1177/0956797620939054.
Lin, C., Tu, P., & Beitsch, L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines, 2020, vol. 9, article no. 16. DOI: 10.3390/vaccines9010016.
Murphy, J., Vallières, F., Bentall, R.P., Shevlin, M., McBride, O., Hartman, T.K., McKay, R., Bennett, K., Mason, L., Gibson-Miller, J., & et al. Psychological Characteristics Associated with COVID-19 Vaccine Hesitancy and Resistance in Ireland and the United Kingdom. Nature Communications, 2021, vol. 12, article no. 29. DOI: 10.1038/s41467-020-20226-9.
Nyhan, B., & Reifler, J. The Roles of Information Deficits and Identity Threat in the Prevalence of Misperceptions. Journal of Elections, Public Opinion and Parties, 2018, vol. 29, pp. 222–244. DOI: 10.1080/17457289.2018.1465061.
Vraga, E. K., & Bode, L. Correction as a Solution for Health Misinformation on Social Media. American Journal of Public Health, 2020, vol. 110, pp. S278–S280. DOI: 10.2105/ajph.2020.305916.
van der Linden, S., Roozenbeek, J., & Compton, J. Inoculating against Fake News about COVID-19. Frontiers in Psychology, 2020, vol. 11, article no. 566790. DOI: 10.3389/fpsyg.2020.566790.
DOI: https://doi.org/10.32620/reks.2025.1.01
Refbacks
- There are currently no refbacks.