Automated, quick, and precise building extraction from aerial images using ll-unet model
Abstract
Keywords
Full Text:
PDFReferences
Chen, Q. Y., & Feng, D. Z. Feature matching of remote‐sensing images based on bilateral local–global structure consistency. IET Image Processing, 2023, vol. 17, iss. 14, pp. 3909-3926. DOI: 10.1049/ipr2.12907.
Ma, X, Xu, J., Chong, Q., Ou, S., Xing, H., & Ni, M. FCUnet: Refined remote sensing image segmentation method based on a fuzzy deep learning conditional random field network. IET Image Processing, 2023, vol. 17, iss. 12, pp. 3616-3629. DOI: 10.1049/ipr2.12870.
Norman, M., Shahar, H. M., Mohamad, Z., Rahim, A., Mohd, F. A., & Shafri, H. Z. M. Urban building detection using object-based image analysis (OBIA) and machine learning (ML) algorithms. IOP Conference Series: Earth and Environmental Science, 2021, vol. 620, article no. 012010. 12 p. DOI: 10.1088/1755-1315/620/1/012010.
Alsabhan, W., Alotaiby, T., & Dudin, B. Detecting Buildings and Nonbuildings from Satellite Images Using U-Net. Hindawi Computational Intelligence and Neuroscience, vol. 2022, article no. 4831223. DOI: 10.1155/2022/4831223.
Kothari, A. M., & Patel, M. Road network extraction methods from remote sensing images: a review paperx. International Journal of Next-Generation Computing, 2022, vol. 13, no. 2, DOI: 10.47164/ijngc.v13i2.376.
Hermosilla, T., Ruiz, L. A., Recio, J. A., & Estornell, J. Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data. Remote Sens., 2011, vol. 3, iss. 6, pp. 1188-1210. DOI: 10.3390/rs3061188.
You, Y., Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., & Liu, W. Building Detection from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote Sens., 2018, vol. 10, iss. 8, article no. 1287. DOI: 10.3390/rs10081287.
Patel, M. J., & Kothari, A. M. Deep Learning-Enabled Road Segmentation and Edge-Centerline Extraction from High-Resolution Remote Sensing Images. International Journal of Image and Graphics, 2023, vol. 23, no. 06, article no. 2350058. DOI: 10.1142/S0219467823500584.
Parikh, Y., & Dr. Koringa, H. A Systematic Analysis of CMR Segmentation Using Deep Learning. International Journal of Next-Generation Computing, 2022, vol. 13 special iss. 3. DOI: 10.47164/ijngc.v13i3.825, 2022.
Guo, H., Liu, Z., Jiang, H., Wang, C., Liu, J., & Liang, D. Big Earth Data: a new challenge and opportunity for Digital Earth’s development. Int J Digit Earth, 2017, vol. 10, iss. 1, pp. 1-12. DOI: 10.1080/17538947.2016.1264490.
Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS Journal of Photogrammetry & Remote Sensing, 1999, vol. 54, iss. 1, pp. 50-60. DOI: 10.1016/S0924-2716(98)00027-6.
Femin, A., & Biju, K. S. Accurate Detection of Buildings from Satellite Images using CNN. 2nd International Conference on Electrical, Communication and Computer Engineering (ICECCE), Istanbul, Turkey, 12-13 June 2020, pp. 1-5. DOI: 10.1109/ICECCE49384.2020.9179232.
Kala, S., & Jeyakumar, M. K. A Proficient Satellite Image Building Detection Using Fuzzy and Neural Network Techniques. International Journal of Engineering Research and Technology, 2019, vol. 12, no. 1, pp. 89-96. Available at: https://www.ripublication.com/irph/ijert19/ijertv12n1_13.pdf (accessed 12.12.2023).
Hamaguchi, R., & Hikosaka, S. Building detection from satellite imagery using ensemble of size-specific detectors. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 2018, pp. 187-191. DOI: 10.1109/CVPRW.2018.00041.
Afanasyev, I., & Prathap, G. Deep Learning Approach for Building Detection in Satellite Multispectral Imagery. International Conference on Intelligent Systems (IS), Funchal, Portugal, 2018, pp. 461-465. DOI: 10.1109/IS.2018.8710471.
Wang, H., & Miao, F. Building extraction from remote sensing images using deep residual U-Net. European Journal of Remote Sensing, 2022, vol. 55, no. 1, pp. 71-85. DOI: 10.1080/22797254.2021.2018944.
Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., & Quinn, J. Continental-Scale Building Detection From High Resolution Satellite Imagery. arXiv preprint arXiv:2107.12283, 2021. DOI: 10.48550/arXiv.2107.12283.
Moghalles, K., Li, H.-C., Al‐Huda, Z., Raza, A., & Malik, A. Weakly supervised building semantic segmentation via superpixel‐CRF with initial deep seeds guiding. IET Image Processing, 2022, vol. 16, no. 12, pp. 3258-3267. DOI: 10.1049/ipr2.12558.
Chen, S., Ogawa, Y., Zhao, C., & Sekimoto, Y. Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, vol. 195, pp. 129-152. DOI: 10.1016/j.isprsjprs.2022.11.006.
Nguyen, V., Ho, T. A., Vu, D. A., Anh, N. T. N., & Thang, T. N. Building footprint extraction in dense areas using super resolution and frame field learning. 12 th International Conference on Awareness Science and Technology (iCAST), November 2023, pp. 112-117. DOI: 10.1109/iCAST57874.2023.10359290.
He, W., Li, J., Cao, W., Zhang, L., & Zhang, H. Building extraction from remote sensing images via an uncertainty-aware network. arXiv preprint arXiv:2307.12309, 2023. DOI: 10.48550/arXiv.2307.12309.
Wang, M., Chen, K., Su, L., Yan, C., Xu, S., Zhang, H., Yuan, P., Jiang, X., & Zhang, B. RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model. arXiv preprint arXiv:2403.07564, 2024. DOI: 10.48550/arXiv.2403.07564.
Liu, Y., Pang, C., Zhan, Z., Zhang, X., & Yang, X. Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model. IEEE Geoscience and Remote Sensing Letters, 2020, vol. 18, no. 5, pp. 811-815. DOI: 10.1109/LGRS.2020.2988032.
Mnih, V. Road and Building Detection Datasets. Massachusetts Buildings Dataset. Available at: https://www.cs.toronto.edu/~vmnih/data/. (accessed 12.12.2023).
Paris, S., Kornprobst, P., Tumblin, J., & Durand, F. Bilateral Filtering: Theory and Applications. Foundations and Trends in Computer Graphics and Vision, 2009, vol. 4, no. 1, pp. 1-73. DOI: 10.1561/0600000020.
Ronneberger, O., Fischer, P., & Brox, T. UNet: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597, 2015, pp. 1-8. DOI: 10.48550/arXiv.1505.04597.
Patel, M. J., Kothari, A. M., & Koringa, H. P A novel approach for semantic segmentation of automatic road network extractions from remote sensing images by modified UNet. Radioelectronic and Computer Systems, 2022, no. 3, pp. 161-173. DOI: 10.32620/reks.2022.3.12.
Patel, M., & Koringa, H. P. Deep Learning Architecture U-Net Based Road Network Detection from Remote Sensing Images. International Journal of Next-Generation Computing, 2023, vol. 14, no. 3. DOI: 10.47164/ijngc.v14i3.1301.
Parikh, Y., & Koringa, H. Left Ventricle Segmentation using Bidirectional Convolution Dense Unet. Journal of Integrated Science & Technology, 2023, vol. 11, no. 1, article no. 417. Available at: https://pubs.thesciencein.org/journal/index.php/jist/article/view/417/297 (accessed 12.12.2023).
Gupta, A., Ramanath, R., Shi, J., & Keerthi, S. S. Adam vs. SGD: Closing the generalization gap on image classification. OPT2021: 13th Annual Workshop on Optimization for Machine Learning, 2021. Available at: https://opt-ml.org/papers/2021/paper53.pdf (accessed 12.12.2023).
Aatila, M., Lachgar, M., & Kartit, A. Comparative study of optimization techniques in deep learning: Application in the ophthalmology field. The International Conference on Mathematics & Data Science (ICMDS) 2020, Journal of Physics: Conference Series, 2021, vol. 1743. DOI 10.1088/1742-6596/1743/1/012002.
Yaloveha, V., Podorozhniak, A., & Kuchuk, H. Convolutional neural network hyperparameter optimization applied to land cover classification. Radioelectronic and computer systems, 2022, no. 1, pp. pp. 115-128. DOI: 10.32620/reks.2022.1.09.
Alshehhi, R. Marpu, P. R., Woon, W. L., & Mura, M. D. Simultaneous Extraction Of Roads And Buildings In Remote Sensing Imagery With Convolutional Neural Networks. ISPRS Journal of Photogrammetry And Remote Sensing, 2017, vol. 130, pp. 139-149. DOI: 10.1016/j.isprsjprs.2017.05.002.
He, K., & Sun, J. Convolutional neural networks at constrained time cost. IEEE Conference on Computer Vision and Pattern Recognition, arXiv preprint arXiv:1412.1710, 2015, pp. 1-8, DOI: 10.48550/arXiv.1412.1710.
Gamal, A., Wibisono, A., Wicaksono, S. B., Abyan, M. A., Hamid, N., Wisesa, H. A., Jatmiko, W., & Ardhianto, R. Automatic LIDAR building segmentation based on DGCNN and euclidean clustering. Journal of Big Data, 2020, no. 7, article no. 102. DOI: 10.1186/s40537-020-00374-x.
DOI: https://doi.org/10.32620/reks.2024.2.04
Refbacks
- There are currently no refbacks.