Method of comparing and transforming images obtained using UAV
Abstract
Keywords
Full Text:
PDFReferences
Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., & Ghayvat, H. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 2021, vol. 10, iss. 20, article no. 2470. DOI: 10.3390/electronics10202470.
Davies, E. R. Computer vision: principles, algorithms, applications, learning. Academic Press Publ., 2018. DOI: 10.1016/C2015-0-05563-0.
Janai, J., Güney, F., Behl, A., & Geiger, A., 2020. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Foundations and Trends® in Computer Graphics and Vision, 2020, vol. 12, iss. 1-3, pp. 1-308. DOI: 10.1561/0600000079.
Rebrov, V., & Lukin, V. Post-processing of compressed noisy images using BM3D filter. Radioelectronic and Computer Systems, 2023, no. 4, pp. 100-111. DOI: 10.32620/reks.2023.4.09.
Bilozerskyi, V., Dergachov, K., Krasnov, L., Zymovin, A., & Popov, A. New method for video stream brightness stabilization: algorithms and performance evaluation. Radioelectronic and Computer Systems, 2023, no. 3, pp. 125-135. DOI: 10.32620/reks.2023.3.10.
Barkovska, O., Filippenko, I., Semenenko, I., Korniienko, V., & Sedlaček, P. Adaptation of FPGA architecture for accelerated image preprocessing. Radioelectronic and Computer Systems, 2023, no. 2, pp. 94-106. DOI: 10.32620/reks.2023.2.08.
Ning, Z., Hu, H., Wang, X., Guo, L., Guo, S., Wang, G., & Gao, X. Mobile edge computing and machine learning in the internet of unmanned aerial vehicles: A survey. ACM Computing Surveys, 2023, vol. 56, iss. 1, article no. 13, pp. 1-31. DOI: 10.1145/3604933.
Petrosian, A. R., Petrosyan, R. V., Pilkevych, I. A., & Graf, M. S. Efficient model of PID controller of unmanned aerial vehicle. Journal of Edge Computing, 2023, vol. 2, iss. 2, pp. 104–124. DOI: 10.55056/jec.593.
Ma, M.-Y., Shen, S.-E., & Huang, Y.-C. Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge Computing. Sensors, 2023, vol. 23, iss. 21, article no. 8999. DOI: 10.3390/s23218999.
Cao, L., Song, P., Wang, Y., Yang, Y., & Peng, B. An Improved Lightweight Real-Time Detection Algorithm Based on the Edge Computing Platform for UAV Images. Electronics, 2023, vol. 12, iss. 10, article no. 2274. DOI: 10.3390/electronics12102274.
Bemposta Rosende, S., Ghisler, S., Fernández-Andrés, J., & Sánchez-Soriano, J. Implementation of an Edge-Computing Vision System on Reduced-Board Computers Embedded in UAVs for Intelligent Traffic Management. Drones, 2023, vol. 7, iss. 11, article no. 682. DOI: 10.3390/drones7110682.
Gollapudi, S. OpenCV with Python. In: Learn Computer Vision Using OpenCV, Apress, Berkeley, CA, 2019, pp. 31-50. DOI: 10.1007/978-1-4842-4261-2_2.
Yulina, S. Implementation of Haar Cascade Classifier for Face Detection and Grayscale Image Transformation Using OpenCV. Jurnal Komputer Terapan, 2021, vol. 7, iss. 1, pp. 100-109. DOI: 10.35143/jkt.v7i1.3411.
Chadha, A., Kashyap, S., Gupta, M., & Kumar, V. License plate recognition system using OpenCV & PyTesseract. CSI Journal of Computing, 2020, vol. 3, iss. 3, pp. 31-35. Available at: https://www.researchgate.net/profile/Jyoti-Deone/publication/348232599_CSI_Journal_of_COMPUTING/links/5ff44163299bf14088707fa8/CSI-Journal-of-COMPUTING.pdf?_sg[0]=started_experiment_milestone&origin=journalDetail&_rtd=e30%3D (Accessed 17 Jan. 2024).
Lindblad, T., & Kinser, J. M. NumPy, SciPy and Python Image Library. Image Processing using Pulse-Coupled Neural Networks. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg, 2013, pp. 35-56. DOI: 10.1007/978-3-642-36877-6_3.
Zhang, Ju., Zhang, Ji., Chen, B., Gao, J., Ji, S., Zhang, X., & Wang, Z. A perspective transformation method based on computer vision. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2020, pp. 765-768. DOI: 10.1109/ICAICA50127.2020.9182641.
Batubara, M. A., Alam, S., Nisa, K., Utami, R. W., Fitriawan, H., & Ulvan, A. Estimating the number of trees in Margasari mangrove forests of Lampung through aerial images using adaptive thresholding and contour extraction methods. Proceedings of the International Conference on Sustainable Biomass (ICSB 2019), Atlantis Press Publ., 2021, vol. 202, pp. 131-136. DOI: 10.2991/aer.k.210603.022.
Rehman, N. A., & Haroon, F. Adaptive Gaussian and double thresholding for contour detection and character recognition of two-dimensional area using computer vision. Engineering Proceedings, 2023, vol. 32, iss. 1, article no. 23. DOI: 10.3390/engproc2023032023.
Sultana, H., Kamal, A. H. M., Apon, T. S., & Alam, M. G. R. Increasing embedding capacity of stego images by exploiting edge pixels in prediction error space. Cyber Security and Applications, 2024, vol. 2, article no. 100028. DOI: 10.1016/j.csa.2023.100028.
Grinberg, M. Flask web development: developing web applications with Python. 2nd edition. O’Reilly Media, Inc., 2018. 312 p. ISBN: 978-1491991732.
Orban, C. How to track objects with stationary background? Available at: https://www.authentise.com/post/how-to-track-objects-with-stationary-background (Accessed 17 Jan. 2024).
Devi, R. Geometric transformations and thresholding of images using Opencv-Python. GRD Journal for Engineering, 2017, vol. 2, iss. 11, pp. 49-52. Available at: https://www.grdjournals.com/uploads/article/GRDJE/V02/I11/0020/GRDJEV02I110020.pdf (Accessed 17 Jan. 2024).
DOI: https://doi.org/10.32620/reks.2024.1.09
Refbacks
- There are currently no refbacks.