Study of methods for searching and localizing objects in images from aircraft using convolutional neural networks
Abstract
Keywords
Full Text:
PDFReferences
Wang, L., Tang, J., & Liao, Q. A Study on Radar Target Detection Based on Deep Neural Networks. IEEE Sensors Letters, 2019, vol. 3, no. 3, article no. 7000504. DOI: 10.1109/LSENS.2019.2896072.
Yu, S. Sonar Image Target Detection Based on Deep Learning. Mathematical Problems in Engineering, 2022, vol. 2022, article no. 5294151. DOI: 10.1155/2022/5294151.
Bondžulić, B., Stojanović, N., Lukin, V., Stankevich, S. A., Bujaković, D., & Kryvenko, S. Target acquisition performance in the presence of JPEG image compression. Defence Technology, 2023. DOI: 10.1016/j.dt.2023.12.006.
Zhao, M., Li, W., Li, L., Hu, J., Ma, P., & Tao, R. Single-Frame Infrared Small-Target Detection: A survey. IEEE Geoscience and Remote Sensing Magazine, 2022, vol. 10, no. 2, pp. 87-119. DOI: 10.1109/MGRS.2022.3145502.
Lei, J., Lay, T., Weiland, C., & Lu, C. Combination of Spatiotemporal ICA and Euclidean Features for Face Recognition. Artificial Intelligence in Theory and Practice. IFIP AI 2006. IFIP International Federation for Information Processing, 2006, vol. 217, pp. 395-403. DOI: 10.1007/978-0-387-34747-9_41.
Ford Blue Cruise Version 1.2 Hands-Off Review: More Automation, Improved Operation. Available at: https://www.motortrend.com/reviews/ford-bluecruise-version-1-2-first-drive-review/. (accessed 5 Jan. 2024).
Cao, Z., Kooistra, L., Wang, W., Guo, L. & Valente, J. Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review. Drones, 2023, no. 7, article no. 620. DOI: 10.3390/drones7100620.
Feng, J. & Yi, C. Lightweight Detection Network for Arbitrary-Oriented Vehicles in UAV Imagery via Global Attentive Relation and Multi-Path Fusion. Drone, 2022, vol. 6, no. 5, article no. 108. DOI: 10.3390/drones6050108.
Alsamhi, S. H., Shvetsov, A. V., Kumar, S., Shvetsova, S. V., Alhartomi, M. A., Hawbani, A., Rajput, N. S., Srivastava, S., Saif, A., & Nyangaresi, V. O. UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment Mitigation, Drones, 2022, vol. 6, no. 7, article no. 154. DOI: 10.3390/drones6070154.
Aposporis, P. Object Detection Methods for Improving UAV Autonomy and Remote Sensing Applications. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2020, pp. 845-853. DOI: 10.1109/ASONAM49781.2020.9381377.
Zhao, C., Liu, R.W., Qu, J., & Gao, R. Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle Imagery: Review and Experimental Comparisons. Engineering Applications of Artificial Intelligence, 2024, vol. 128, article no. 107513. DOI: 10.1016/j.engappai.2023.107513.
Kong, M., Roh, M., Kim, Lee, J., Kim, J., & Lee, G. Object detection method for ship safety plans using deep learning. Ocean Engineering, 2022, vol. 246, article no. 110587. DOI: 10.1016/j.oceaneng.2022.110587.
Lyu, M., Zhao, Y., Huang, C., & Huang H. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sensing, 2023, no. 15, article no. 3266. DOI: 10.3390/rs15133266.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 658-666. DOI: 10.48550/arXiv.1902.09630.
Ting, K. M. Precision and Recall. Encyclopedia of Machine Learning, 2010. 781 p. DOI: 10.1007/978-0-387-30164-8_652.
PYTORCH DOCUMENTATION. Available at: https://pytorch.org/docs/stable/index.html#pytorch-documentation. (accessed 5 Jan. 2024).
Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., & Ling, H. Detection and Tracking Meet Drones Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, vol. 44, no. 11, pp. 7380-7399. DOI: 10.1109/TPAMI.2021.3119563.
Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., & Tian, Q. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. European Conference on Computer Vision (ECCV), 2018, vol. 128, pp. 1141-1159. DOI: 10.1007/s11263-019-01266-1.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & Berg, A. SSD: Single Shot MultiBox Detector. Lecture Notes in Computer Science, 2016, vol. 9905, pp. 21-37. DOI: 10.1007/978-3-319-46448-0_2
YOLOv5 by Ultralytics. Available at: https://github.com/ultralytics/yolov5. (accessed 5 Jan. 2024).
Shaoqing, R., Kaiming, H., Girshick, R., & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, pp. 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
Simonyan, K., & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations (ICLR 2015), 2015, pp. 1-14. DOI: 10.48550/arXiv.1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. DOI: 10.1109/CVPR.2016.90.
Tan, M., & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 6105-6114. DOI: 10.48550/arXiv.1905.11946.
SMOOTHL1LOSS. Available at: https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html. (accessed 5 Jan. 2024).
CROSSENTROPYLOSS. Available at: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html. (accessed 5 Jan. 2024).
Sutskever, I., Martens, J., Dahl, G. & Hinton, G. On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 1139-1147.
Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V. & Le, Q. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314-1324. DOI: 10.1109/ICCV.2019.00140.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, pp. 142-158. DOI: 10.1109/TPAMI.2015.2437384.
Girshick, R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448. DOI: 10.1109/ICCV.2015.169.
Redmon, J. YOLOv3: An Incremental Improvement, 2018. DOI: 10.48550/arXiv.1804.02767. (unpablished).
Kingma, D. P., & Ba, J. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, 2014. DOI: 10.48550/arXiv.1412.6980.
Rubel, A., Rubel, O., Tsekhmystro, R., Rebrov, V., & Lukin V. Automatic Decision Undertaking on Expedience of Image Denoising Based on Filter Efficiency Prediction. Proceedings of ISSOIA Conference, 2022, pp. 504-524. DOI: 10.1007/978-981-99-4098-1_44.
Tsymbal, O. V., Lukin, V. V., Ponomarenko, N. N., Zelensky, A. A., Egiazarian, K. O., & Astola, J. T. Three-state Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing. EURASIP Journal on Applied Signal Processing, 2005, no. 8, pp. 1185-1204. DOI: 10.1155/ASP.2005.1185.
Proskura, G. A., Rubel, O. S., & Lukin, V. V. On classifier learning methodologies with application to compressed remote sensing images. Radioelectronic and Computer Systems, 2022, no. 3, pp. 174-189. DOI: 10.32620/reks.2022.3.13.
DOI: https://doi.org/10.32620/reks.2024.1.08
Refbacks
- There are currently no refbacks.