Method of creation of FPGA based implementation of artificial intelligence as a service
Abstract
Keywords
Full Text:
PDFReferences
Perepelitsyn, A., Kulanov, V., & Zarizenko, I. Method of QoS evaluation of FPGA as a service. Radioelectronic and Computer Systems, 2022, no. 4, pp. 153–160. DOI: 10.32620/reks.2022.4.12.
Perepelitsyn, A., & Kulanov, V. Technologies of FPGA-based projects Development Under Ever-changing Conditions, Platform Constraints, and Time-to-Market Pressure. Proceedings 2022 IEEE 12th International Conference on Dependable Systems, Services and Technologies, DESSERT 2022, 2022, pp. 1-5, DOI: 10.1109/DESSERT58054.2022.10018828.
Hu, N., Wang, C., & Zhou, X. FLIA: Architecture of Collaborated Mobile GPU and FPGA Heterogeneous Computing. Electronics, 2022, vol. 11, iss. 22, no. 3756. pp. 1-14. DOI: 10.3390/electronics11223756.
Liang, B., Wang, S., Huang, Y., Liu, Y., & Ma, L. F-LSTM: FPGA-Based Heterogeneous Computing Framework for Deploying LSTM-Based Algorithms. Electronics, 2023, vol. 12, iss. 5, no. 1139. pp. 1-15. DOI: 10.3390/electronics12051139.
How does Let’s Enhance increases image resolution? Available at: https://help.letsenhance.io/en/ article/how-does-lets-enhance-increases-image-resolution-3p5z0p/ (accessed February 28, 2023).
Maksymov, I. Analogue and Physical Reservoir Computing Using Water Waves: Applications in Power Engineering and Beyond. Energies, 2023, vol. 16, iss. 14, no. 5366. pp. 1-26. DOI: 10.3390/en16145366
Khoram, E., Chen, A., Liu, D., Ying, L., Wang, Q., Yuan, M., & Yu, Z. Nanophotonic media for artificial neural inference. Photon. Res. 2019, vol. 7, iss. 8, pp. 823-827. DOI: 10.1364/PRJ.7.000823.
Alveo Product Selection Guide, Data Center Accelerator Cards, Xilinx. Available at: https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/alveo-product-selection-guide.pdf. (accessed February 28, 2023).
Alveo U55C Data Center Accelerator Cards Data Sheet, AMD, DS978 (v1.3). Available at: https://docs.xilinx.com/r/en-US/ds978-u55c. (accessed June 23, 2023).
VHK158 Evaluation Board User Guide, AMD, UG1611 (v1.0). Available at: https://docs.xilinx.com/r/en-US/ug1611-vhk158-eval-bd. (accessed July 18, 2023).
Alveo UL3524 Ultra Low Latency Trading Data Sheet, AMD, DS1009 (v1.1). Available at: https://docs.xilinx.com/r/en-US/ds1009-ul3524. (accessed September 27, 2023).
Barkovska, O., Filippenko, I., Semenenko, I., Korniienko, V., & Sedlaček, P. Adaptation of FPGA architecture for accelerated image preprocessing. Radioelectronic and Computer Systems, 2023, no. 2, pp. 94-106. DOI: 10.32620/reks.2023.2.08
Zynq DPU Product Guide, Xilinx, PG338 (v3.3). Available at: https://docs.xilinx.com/r/3.3-English/pg338-dpu. (accessed February 28, 2023).
Perepelitsyn, A., Fesenko, H., Kasapien, Y., & Kharchenko, V. Technological Stack for Implementation of AI as a Service based on Hardware Accelerators. Proceedings 2022 IEEE 12th International Conference on Dependable Systems, Services and Technologies, DESSERT 2022, 2022, pp. 1-5. DOI: 10.1109/DESSERT58054.2022.10018615.
UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs, Xilinx, UG949 (v2021.2). Available at: https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/SLR-Utilization-Considerations. (accessed February 28, 2023).
Vivado Design Suite Properties Reference Guide, Xilinx, UG912 (v2022.1). Available at: https://docs.xilinx.com/r/2022.1-English/ug912-vivado-properties/USER_CROSSING_SLR. (accessed February 28, 2023).
Perepelitsyn, A., Kasapien, Y., Fesenko, H., & Kharchenko, V. Technologies for Implementing of Artificial Intelligence as a Service based on Hardware Accelerators. Aerospace Technic and Technology, 2022, no. 6, pp. 57-65. DOI: 10.32620/aktt.2022.6.07.
DOI: https://doi.org/10.32620/reks.2023.3.03
Refbacks
- There are currently no refbacks.