Risk and uncertainty assessment in software project management: integrating decision trees and Monte Carlo modeling
Abstract
Keywords
Full Text:
PDFReferences
Badings, T., Simão, T. D., Suilen, M., & Jansen, N. Decision-making under uncertainty: beyond probabilities. International Journal on Software Tools for Technology Transfer, 2023, vol. 25, pp. 375-391. DOI: 10.1007/s10009-023-00704-3.
Burns, B. L., Barney, J. B., Angus, R. W., & Herrick, H. N. Enrolling stakeholders under conditions of risk and uncertainty. Strategic Entrepreneurship Journal, 2016, vol. 10, no. 1, pp. 97-106. DOI: 10.1002/sej.1209.
Strielkina, A., & Tetskyi, A. Methodology for assessing satisfaction with requirements at the early stages of the software development process. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2023, no. 1, pp. 197-206. DOI: 10.32620/reks.2023.1.16.
Digital technologies for a new future (LC/TS.2021/43), Economic Commission for Latin America and the Caribbean (ECLAC), Santiago, 2021. 95 p. Available at: https://www.cepal.org/sites/default/files/publication/files/46817/S2000960_en.pdf (accessed 20.06.2023).
Mentis, M. Managing project risks and uncer¬tainties. Forest ecosystems, 2015, vol. 2, no. 1, article no. 2, pp. 1-14. DOI: 10.1186/s40663-014-0026-z.
Dabo, T. Nailing the Decision-Making Process: A Project Manager's Guide. Available at: https://www.researchgate.net/publication/353934618_Nailing_the_Decision-Making_Process_A_Project_Manager%27s_Guide (accessed 20.06.2023).
Shad, F., Gul, M., & Zahid, M. Leadership And Decision Making In The Project Management Life Cycle: A Knowledge Management Perspective. Journal of Business & Tourism, 2019, vol. 5, no. 2, pp. 89-97. DOI: 10.34260/jbt.v5i2.142.
Mousavi, S. A., Seiti, H., Hafezalkotob, A., Asian, S., & Mobarra, R. Application of risk-based fuzzy decision support systems in new product development: An R-VIKOR approach. Applied Soft Computing, 2021, vol. 109, article no. 107456, pp. 1-15. DOI: 10.1016/j.asoc.2021.107456.
Leong, J., Yee, K. M., Baitsegi, O., Palanisamy, L., & Ramasamy, R. K. Hybrid project management between traditional software development lifecycle and agile based product development for future sustainability. Sustainability, 2023, vol. 15, no. 2, article no. 1121. DOI: 10.3390/su15021121.
Alves, L. M., Souza, G., Ribeiro, P., & Machado, R. J. Longevity of risks in software development projects: a comparative analysis with an academic environment. Procedia Computer Science, 2021, vol. 181, pp. 827-834. DOI: 10.1016/j.procs.2021.01.236.
Merigó, J. M. Decision-making under risk and uncertainty and its application in strategic management. Journal of Business Economics and Management, 2015, vol. 16, no. 1, pp. 93-116. DOI: 10.3846/16111699.2012.661758.
Bélyácz, I., & Daubner, K. Uncertainity of risk and increasing risk of uncertainty in business decisions. Economy and Finance: English Language Edition of Gazdaság és Pénzügy, 2021, vol. 8, no. 3, pp. 264-312. DOI: 10.33908/EF.2021.3.2.
Edwards, J. A., Snyder, F. J., Allen, P. M., Makinson, K. A., & Hamby, D. M. Decision making for risk management: a comparison of graphical methods for presenting quantitative uncertainty. Risk Analysis: An International Journal, 2012, vol. 32, no. 12, pp. 2055-2070. DOI: 10.1111/j.1539-6924.2012.01839.x.
Hosseini, S., Ivanov, D., & Dolgui, A. Review of quantitative methods for supply chain resilience analysis. Transportation research part E: logistics and transportation review, 2019, vol. 125, pp. 285-307. DOI: 10.1016/j.tre.2019.03.001.
Zakaria, A., Ismail, F. B., Lipu, M. H., & Hannan, M. A. Uncertainty models for stochastic optimization in renewable energy applications. Renewable Energy, 2020, vol. 145, pp. 1543-1571. DOI: 10.1016/j.renene.2019.07.081.
Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Chilamkurti, N. RETRACTED: A framework for risk assessment, management and evaluation: Economic tool for quantifying risks in supply chain. Future Generation Computer Systems, 2019, vol. 90, no. 1, pp. 489-502. DOI: 10.1016/j.future.2018.08.035.
Pournader, M., Kach, A., & Talluri, S. A review of the existing and emerging topics in the supply chain risk management literature. Decision sciences, 2020, vol. 51, no. 4, pp. 867-919. DOI: 10.1111/deci.12470.
Loquercio, A., Segu, M., & Scaramuzza, D. A general framework for uncertainty estimation in deep learning. IEEE Robotics and Automation Letters, 2020, vol. 5, no. 2, pp. 3153-3160. DOI: 10.1109/LRA.2020.¬2974682.
Cameron, R., Sankaran, S., & Scales, J. Mixed methods use in project management research. Project Management Journal, 2015, vol. 46, no. 2, pp. 90-104. DOI: 10.1002/pmj.21484.
Alves, J. L., Ferreira, E. A., & de Nadae, J. Crisis and risks in engineering project management: A review. Brazilian Journal of Operations & Production Management, 2021, vol. 18, no. 4, pp. 1-17. DOI: 10.14488/BJOPM.2021.026.
Wickham, H. et al. The Grammar of Graphics. Package ‘ggplot2’. Version 3.4.3. Repository CRAN, 2023. 304 p. Available at: https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf (accessed 20.08.2023).
Therneau, T. et al. Recursive Partitioning and Regression Trees. Package ‘rpart’. Version 4.1.19. Repository CRAN, 2022. 34 p. Available at: https://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed 20.08.2023).
DOI: https://doi.org/10.32620/reks.2023.3.17
Refbacks
- There are currently no refbacks.