A novel approach and hybrid parallel algorithms for solving the fixed charge transportation problem
Abstract
Keywords
Full Text:
PDFReferences
Nicholson, C. D., & Zhang, W. Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem. Computers & Industrial Engineering, 2016, vol. 99, pp. 260-268. DOI: 10.1016/J.CIE.2016.07.030.
Tsai, Chun-Wei., Tseng, Shih-Pang., & Chiang, Ming-Chao. A fast parallel genetic algorithm for traveling salesman problem. Methods and Tools of Parallel Programming Multicomputers: Second Russia-Taiwan Symposium, MTPP 2010, Lecture Notes in Computer Science, vol. 6083. Springer, Berlin, Heidelberg, 2010, pp. 241-250. DOI: 10.1007/978-3-642-14822-4_27.
Skorpil, V., Oujezsky, V., Cika, P., & Tuleja, M. Parallel processing of genetic algorithms in Python language. 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy, 2019, pp. 3727-3731. DOI: 10.1109/PIERS-Spring46901.
Gottlieb, J., & Paulmann, L. Genetic algorithms for the fixed charge transportation problem. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 1998, pp. 330-335. DOI: 10.1109/ICEC.1998.699754.
Midya, S., Roy, S. K., & Yu, V. F. Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. International Journal of Machine Learning and Cybernetics, 2021, vol. 12, pp. 699-717. DOI: 10.1007/s13042-020-01197-1.
Adlakha, V., & Kowalski, K. A simple heuristic for solving small fixed-charge transportation problems. Omega, 2003, vol. 31, iss. 3, pp. 205-211. DOI: 10.1016/S0305-0483(03)00025-2.
Roberti, R., Bartolini, E., & Mingozzi, A. The fixed charge transportation problem: An exact algorithm based on a new integer programming formulation. Management Science, 2015, vol. 61, iss. 6, pp. 1275-1291. DOI : 10.1287/mnsc.2014.1947.
Kowalski, K., & Lev, B. On step fixed-charge transportation problem. Omega, 2008, vol. 36, iss. 5, pp. 913-917. DOI: 10.1016/j.omega.2007.11.001.
Adlakha, V., & Kowalski, K. A heuristic method for ‘more-for-less’ in distribution related problems. International Journal of Mathematical Education in Science and Technology, 2001, vol. 32, iss. 1, pp. 61-71. DOI: 10.1080/00207390117225.
Kurennov, S., Barakhov, K., & Vambol, O. Topological optimization of a symmetrical adhesive joint. Island model of genetic algorithm. Radioelectronic and Computer Systems, 2022, no. 3, pp. 67-83. DOI: 10.32620/reks.2022.3.05.
Neskorodieva, T., Fedorov, E., Chychuzhko, M., et al. Metaheuristic method for searching quasi-optimal route based on the ant algorithm and annealing simulation. Radioelectronic and Computer Systems, 2022, no. 1, pp. 92-102. DOI: 10.32620/reks.2022.1.07.
Booker, L. B., Goldberg, D. E., & Holland, J. H. Classifier systems and genetic algorithms. Artificial Intelligence, 1989, vol. 40, iss. 1-3, pp. 235-282. DOI: 10.1016/0004-3702(89)90050-7.
Kim, H. J., & Hooker, J. N. Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach. Annals of Operations Research, 2002, vol. 115, iss. 1-4, pp. 95-124. DOI: 10.1023/A:1021145103592.
Lahjouji El Idrissi, A., Ezzerrifi Amrani, I., & El Allaoui, A. Improved Parallel Genetic Algorithm for Fixed Charge Transportation Problem. In: Farhaoui, Y., Rocha, A., Brahmia, Z., Bhushab, B. (eds) Artificial Intelligence and Smart Environment. ICAISE 2022. Lecture Notes in Networks and Systems, 2023, vol. 635. pp. 524-530. Springer, Cham. DOI: 10.1007/978-3-031-26254-8_76.
Michalewicz, Z., & Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary computation, 1996, vol. 4, no. 1, pp. 1-32. DOI: 10.1162/evco.1996.4.1.1.
Michalewicz, Z., Vignaux, G. A., & Hobbs, M. A nonstandard genetic algorithm for the nonlinear transportation problem. ORSA Journal on computing, 1991, vol. 3, iss. 4, pp. 307-316. DOI: DOI: 10.1287/ijoc.3.4.307.
Molla-Alizadeh-Zavardehi, S., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. Solving a capacitated fixed-charge transportation problem by artificial immune and genetic algorithms with a Prüfer number representation. Expert Systems with Applications, 2011, vol. 38, iss. 8, pp. 10462-10474. DOI: 10.1016/j.eswa.2011.02.093.
Lotfi, M. M., & Tavakkoli-Moghaddam, R. A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems. Applied Soft Computing, 2013, vol. 13, iss. 5, pp. 2711-2726. DOI: 10.1016/j.asoc.2012.11.016.
Liu, C., & Kroll, A. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus, 2016, vol. 5, article no. 1361. DOI: 10.1186/s40064-016-3027-2.
El Idrissi, A. L., Tajani, C., & Sabbane, M. HOPX crossover operator for the fixed charge logistic model with priority based encoding. International Journal of Electrical and Computer Engineering, 2018, vol. 8, iss. 6, pp. 5351-5358. DOI: 10.11591/ijece.v8i6.pp5351-5358.
Leite, J. P. B., & Topping, B. H. V. Improved genetic operators for structural engineering optimization. Advances in Engineering Software, 1998, vol. 29, iss. 7-9, pp. 529-562. DOI: 10.1016/S0965-9978(98)00021-0.
Harada, T., & Alba, E. Parallel genetic algorithms: a useful survey. ACM Computing Surveys, 2020, vol. 53, iss. 4, article no. 86, pp. 1-39. DOI: 10.1145/3400031.
Gehring, H., & Bortfeldt, A. A parallel genetic algorithm for solving the container loading problem. International Transactions in Operational Research, 2002, vol. 9, no 4, pp. 497-511. DOI: 10.1111/1475-3995.00369.
He, J., Chang, D., Mi, W., & Yan, W. A hybrid parallel genetic algorithm for yard crane scheduling. Transportation Research Part E: Logistics and Transportation Review, 2010, vol. 46, iss 1, pp. 136-155. DOI: 10.1016/j.tre.2009.07.002.
Mygal, V., Mygal, G., & Mygal, S. Artificial intelligence as the cognitive value of heuristic models. Radioelectronic and computer systems, 2022, no 2, pp. 118-130. DOI: 10.32620/reks.2022.2.10.
DOI: https://doi.org/10.32620/reks.2023.3.02
Refbacks
- There are currently no refbacks.