Technique for IoT malware detection based on control flow graph analysis
Abstract
Keywords
Full Text:
PDFReferences
Trend Micro. The IoT Attack Surface: Threats and Security Solutions. Available at: https://www.trendmicro.com (accessed 11.01.2022).
Check point software cyber security report 2022. Available at: https://www.ntsc.org (accessed 11.01.2022).
Nozomi Networks Labs. What IT Needs to Know about OT/IoT Security Threats in 2022. Available at: https://www.nozominetworks.com (accessed 11.01.2022).
OWASP Internet of Things. Available at: https://owasp.org (accessed 11.01.2022).
Lysenko, S., Kharchenko, V., Bobrovnikova, K., Shchuka, R. Computer systems resilience in the presence of cyber threats: taxonomy and ontology. Radioelectronic and computer systems, 2020, vol. 1, pp. 17-28, 10.32620/reks.2020.1.02.
Shelekhov, V., Barchenko, N., Kalchenko, V., Obodniak, V. A hierarchical fuzzy quality assessment of complex security information systems. Radioelectronic and computer systems, 2020, vol. 4, pp. 106-115. DOI: 10.32620/reks.2020.4.10.
Kolisnyk, M. Vulnerability analysis and method of selection of communication protocols for information transfer in Internet of Things systems. Radioelectronic and computer systems, 2021, vol. 1, pp. 133-149. DOI: 10.32620/reks.2021.1.12.
Morozova, O., Nicheporuk, A., Tetskyi, A., Tkachov, V. Methods and technologies for ensuring cybersecurity of industrial and web-oriented systems and networks. Radioelectronic and computer systems, 2021, vol. 4, pp. 145-156. DOI: 10.32620/reks.2021.4.12.
Sochor, Tomas., Chalupova, Nadezda. Interpersonal Internet Messaging Prospects in Industry 4.0 Era. Recent Advances in Soft Computing and Cybernetics. Springer, Cham, 2021, pp. 285-295. DOI: 10.1007/978-3-030-61659-5_24.
Savenko, B., Lysenko, S., Bobrovnikova, K., Savenko, O. and Markowsky, G. Detection DNS Tunneling Botnets, 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2021, pp. 64-69. DOI: 10.1109/IDAACS53288.2021.9661022.
Cabri, A., Suchacka, G., Rovetta, S., Masulli, F. Online Web Bot Detection Using a Sequential Classification Approach. IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, United Kingdom, 2018, pp. 1536-1540. DOI: 10.1109/HPCC/SmartCity/DSS.2018.00252.
Scanzio, S., Wisniewski, L., Gaj, P. Heterogeneous and dependable networks in industry – A survey. Computers in Industry, 2021, vol 125, article no. 103388. DOI: 10.1016/j.com-pind.2020.103388.
Vijayakumaran, C., Muthusenthil, B., & Manickavasagam, B. A reliable next generation cyber security architecture for industrial internet of things environment. International Journal of Electrical and Computer Engineering, 2020, vol. 10, no. 1, pp. 387-395. DOI: 10.11591/ijece.v10i1.pp387-395.
Wani, A., & Revathi, S. Ransomware protection in loT using software defined networking. International Journal of Electrical and Computer Engineering, 2020, vol. 10, no. 3, pp. 3166-3175. DOI: 10.11591/ijece.v10i3.pp3166-3175.
Karande, J., Joshi, S. DEDA: An algorithm for early detection of topology attacks in the internet of things. International Journal of Electrical & Computer Engineering, 2021, vol. 11, no. 2, pp. 1761-1770. DOI: 10.11591/ijece.v11i2.pp1761-1770.
Chetan, R., Shahabadkar, R. A comprehensive survey on exiting solution approaches towards security and privacy requirements of IoT. International Journal of Electrical & Computer Engineering, 2018, vol. 8, no. 4, pp. 2319-2326. DOI: 10.11591/ijece.v8i4.pp2319-2326.
Anidu, A., Obuzor, Z. Evaluation of machine learning algorithms on Internet of Things (IoT) malware opcodes. Handbook of Big Data Analytics and Forensics Springer, Cham, 2022, pp. 177-191. DOI: 10.1007/978-3-030-74753-4_12.
Shafiq, M., Tian, Z., Bashir, A. K., Du, X., Guizani, M. CorrAUC: a malicious bot-IoT traffic detection method in IoT network using machine learning techniques. IEEE Internet of Things Journal, 2021, vol. 8, no. 5, pp. 3242-3254. DOI: 10.1109/JIOT.2020.3002255.
Verma, A., & Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications, 2020, vol. 111, no. 4, pp. 2287-2310. DOI: 10.1007/s11277-019-06986-8.
Rey, V., Sánchez, P. M. S., Celdrán, A. H., & Bovet, G. Federated learning for malware detection in iot devices. Computer Networks, 2022, vol. 204, article no. 108693. DOI: 10.1016/j.comnet.2021.108693.
Shrivastava, R. K., Bashir, B., & Hota, C. Attack detection and forensics using honeypot in IoT environment. International Conference on Distributed Computing and Internet Technology, Springer, Cham, 2019, pp. 402-409. DOI: 10.1007/978-3-030-05366-6_33.
Manimurugan, S., Al-Mutairi, S., Aborokbah, M. M., Chilamkurti, N., Ganesan, S., & Patan, R. Effective attack detection in internet of medical things smart environment using a deep belief neural network. IEEE Access, 2020, vol. 8, pp.77396-77404. DOI: 10.1109/ACCESS.2020.2986013.
Tian, Z., Luo, C., Qiu, J., Du, X., & Guizani, M. A distributed deep learning system for web attack detection on edge devices. IEEE Transactions on Industrial Informatics, 2019, vol. 16, no. 3, pp. 1963-1971. DOI: 10.1109/TII.2019.2938778.
Roopak, M., Tian, G. Y., & Chambers, J. Deep learning models for cyber security in IoT networks. IEEE 9th annual computing and communication workshop and conference (CCWC), 2019, pp. 0452-0457. DOI: 10.1109/CCWC.2019.8666588.
Baig, Z. A., Sanguanpong, S., Firdous, S. N., Nguyen, T. G., & So-In, C. Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 2020, vol. 102, pp. 198-209. DOI: 10.1016/j.future.2019.08.007.
Al-Duwairi, B. et al. SIEM-based detection and mitigation of IoT-botnet DDoS attacks. International Journal of Electrical & Computer Engineering, 2020, vol. 10, no. 2, pp. 2182-2191. DOI: 10.11591/ijece.v10i2.pp2182-2191.
Rathore, S., Kwon, B. W., & Park, J. H. BlockSecIoTNet: Blockchain-based decentralized security architecture for IoT network. Journal of Network and Computer Applications, 2019, vol. 143, pp. 167-177. DOI: 10.1016/j.jnca.2019.06.019.
Ravi, N., & Shalinie, S. M. Learning-driven detection and mitigation of DDoS attack in IoT via SDNcloud architecture. IEEE Internet of Things Journal, 2020, vol. 7, no. 4, pp. 3559-3570. DOI: 10.1109/JIOT.2020.2973176.
Moti, Z., Hashemi, S., Karimipour, H., Dehghantanha, A., Jahromi, A. N., Abdi, L., & Alavi, F. Generative adversarial network to detect unseen internet of things malware. Ad Hoc Networks, 2021, vol. 122, no. 2, article no. 102591. DOI: 10.1016/j.adhoc.2021.102591.
Taheri, R., Javidan, R., Pooranian, Z. Adversarial android malware detection for mobile multimedia applications in IoT environments. Multimedia Tools and Applications, 2021, vol. 80, no. 3, pp. 16713-16729. DOI: 10.1007/s11042-020-08804-x.
Jeon, J., Park, J. H., & Jeong, Y. S. Dynamic analysis for IoT malware detection with convolution neural network model. IEEE Access, 2020, vol. 8, pp. 96899-96911. DOI: 10.1109/ACCESS.2020.2995887.
Ngo, Q. D., Nguyen, H. T., Le, V. H., & Nguyen, D. H. A survey of IoT malware and detection methods based on static features. ICT Express, 2020, vol. 6, no. 4, pp. 280-286. DOI: 10.1016/j.icte.2020.04.005.
Vaccari, I., Chiola, G., Aiello, M., Mongelli, M., Cambiaso, E. MQTTset, a New Dataset for Machine Learning Techniques on MQTT. Sensors, 2020, vol. 20, no. 22, article no. 6578. DOI: 10.3390/s20226578.
Lysenko, S., Bobrovnikova, K., Shchuka, R. Savenko, O. A Cyberattacks Detection Technique Based on Evolutionary Algorithms. IEEE 11th International Conference on Dependable Systems, Services and Technologies, 2020, pp. 127-132. DOI: 10.1109/DESSERT50317.2020.9125016.
Lysenko, S., Savenko, O., Bobrovnikova, K. DDoS Botnet Detection Technique Based on the Use of the Semi-Supervised Fuzzy c-Means Clustering. CEUR-WS, 2018, vol. 2104, paper no. 251, pp. 688-695.
Lysenko, S., Bobrovnikova, K., Matiukh, S., Hurman, I., Savenko, O.Detection of the botnets’ low-rate DDoS attacks based on self-similarity. International Journal of Electrical and Computer Engineering, ISSN 2088-8708, 2020, vol. 10, no. 4, pp. 3651-3659. DOI: 10.11591/ijece.v10i4.pp3651-3659.
Lysenko, S., Bobrovnikova, K., Savenko, O., Shchuka, R. Technique for Cyberattacks Detection Based on DNS Traffic Analysis, CEUR-WS, 2020, vol. 2623, paper no. 19. pp. 208-218.
Lysenko, S., Bobrovnikova, K., Savenko, O., Kryshchuk, A. BotGRABBER: SVM-Based Self-Adaptive System for the Network Resilience Against the Botnets’ Cyberattacks. Communications in Computer and Information Science, 2019, pp. 127-143.
IoT dataset. Available at: https://github.com/thieu1995/iot_dataset (accessed 11.01.2022).
IoTPOT. Available at: https://sec.ynu.codes/iot/ (accessed 11.01.2022).
Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C. IoTPOT: A novel honeypot for revealing current IoT threats. Journal of Information Processing, 2016, vol. 24, no. 3, pp. 522-533. DOI: 10.2197/ipsjjip.24.522.
Google Play. Available at: https://play.google.com/store/apps?hl=ru&gl=US (accessed 11.01.2022).
OpenWrt. Available at: https://openwrt.org/ (accessed 11.01.2022).
Radare2. Available at: https://www.radare.org/n/ (accessed 11.01.2022).
NetworkX. Available at: https://networkx.org/ (accessed 11.01.2022).
Choudhary, S., Sharma, A. Malware Detection & Classification using Machine Learning, International Conference on Emerging Trends in Communication, Control and Computing, 2020, pp. 1-4. DOI: 10.1109/ICONC345789.2020.9117547.
Tirandasu, R. K., Prasanth, Y. A Review on Malicious Software Detection using Machine Learning Algorithms, Second International Conference on Electronics and Sustainable Communication Systems (ICESC), 2021, pp. 1945-1948. DOI: 10.1109/ICESC51422.2021.9532700.
Singh, P., Kaur, S., Sharma, S., Sharma, G., Vashisht S., Kumar, V. Malware Detection Using Machine Learning, International Conference on Technological Advancements and Innovations (ICTAI), 2021, pp. 11-14. DOI: 10.1109/ICTAI53825.2021.9673465.
Köse, Ü., Samet, R. Detection of Malware with Deep Learning Method, International Conference on Computer Science and Engineering (UBMK), 2021, pp. pp. 665-669. DOI: 10.1109/UBMK52708.2021.9559020.
DOI: https://doi.org/10.32620/reks.2022.1.11
Refbacks
- There are currently no refbacks.