Simulation and forecasting of the influenza epidemic process using seasonal autoregressive integrated moving average model
Abstract
Keywords
Full Text:
PDFReferences
Paget J. Preventing seasonal influenza worldwide through vaccination, education, and international cooperation: research, findings, and recommendations from the Global Influenza Initiative. Influenza and Other Respiratory Viruses, 2015, vol. 9, suppl. 1, pp. 1-2. DOI: 10.1111/irv.12327.
Hay, A. J., McCauley, J. W. The WHO global influenza surveillance and response system (GISRS)-A future perspective. Influenza and Other Respiratory Viruses, 2018, vol. 12, iss. 5, pp. 551-557. DOI: 10.1111/irv.12565.
Bresee, J., Hayden, F.G. Epidemic influenza--responding to the expected but unpredictable. The New England Journal of Medicine, 2013, vol. 368, iss. 7, pp. 589-92. DOI: 10.1056/NEJMp1300375.
Solomon, D. A., Sherman, A. C., Kanjilal, S. Influenza in the COVID-19 Era. Journal of American Medical Association, 2020, vol. 324, iss. 13, pp. 1342-1343. DOI: 10.1001/jama.2020.14661.
Li, B. Z., Li, M. S., Huang, J. Y., Chen, Y. Y., Lu, Y. H. Expanding the pandemic influenza preparedness framework to the epidemic of COVID-19. Zhonghua Yu Fang Yi Xue Za Zhi, 2020, vol. 54, iss. 6, pp. 597-601. DOI: 10.3760/cma.j.cn112150-20200316-00357.
Wormser, G. P. COVID-19 versus seasonal influenza 2019-2020: USA. Wiener Klinische Wochenschrift, 2020, vol. 132, iss. 13-14, pp. 387-389. DOI: 10.1007/s00508-020-01685-y.
Konala, V. M., et. al. A Case Series of Patients Coinfected With Influenza and COVID-19. Journal of Investigative Medicine High Impact Case Reports, 2020, vol. 8. DOI: 10.1177/2324709620934674.
Chaychenko, T., et. al. Nutritional practices as an obesogenic predictor in school-age children from eastern and western regions of Ukraine. Problemi Endokrinnoi Patologii, 2021, vol. 1, pp. 75-83. DOI: 10.21856/j-PEP.2021.1.10.
Bagcchi, S. Ukraine struggles to implement flu vaccination. The Lancet. Respiratory Medicine, 2016, vol. 4, iss. 7, pp. 541-542. DOI: 10.1016/S2213-2600(16)30141-2.
Adlhoch, C., Mook, P., Lamb, F., Ferland, L., Melidou, A., Amato-Gauci, A. J., Pebody, R. Very little influenza in the WHO European Region during the 2020/21 season, weeks 40 2020 to 8 2021. Euro Surveillance, 2021, vol. 26, iss. 11, pii: 2100221. DOI: 10.2807/1560-7917.ES.2021.26.11.2100221.
Yakovlev, S., Bazilevych, K., Chumachenko, D., Chumachenko, T., Hulianytskyi, L., Meniailov, I., Tkachenko, A. The concept of developing a decision support system for the epidemic morbidity control. CEUR Workshop Proceedings, 2020, vol. 2753, pp. 265–274.
Rvachev, L. A., Longini Jr., I. M. A mathematical model for the global spread of influenza. Mathematical Biosciences, 1985, vol. 75, iss. 1, pp. 3-22. DOI: 10.1016/0025-5564(85)90064-1.
Edlund, S., et. al. Comparing three basic models for seasonal influenza. Epidemics, 2011, vol. 3, iss. 3-4, pp. 135-142. DOI: 10.1016/j.epidem.2011.04.002.
Levy, N., Lv, M., Yom-Tov, E. Modeling influenza-like illnesses through composite compartmental models. Physica A: Statistical Mechanical and its Applications, 2018, vol. 494, pp. 288-293. DOI: 10.1016/j.physa.2017.12.052.
Fudolig, M., Howard, R. The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE, 2020, vol. 15, iss. 12. DOI: 10.1371/journal.pone.0243408.
Kanyiri, C.W., Kimathi, M., Livingstone, L. Mathematical Analysis of Influenza A Dynamics in the Emergence of Drug Resistance. Computational and Mathematical Methods in Medicine, 2018, vol. 2018. DOI: 10.1155/2018/2434560.
Roosa, K., Chowell, G. Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models. Theoretical Biology and Medical Modelling, 2019, vol. 16, iss. 1. DOI: 10.1186/s12976-018-0097-6.
Caini, S., Schellevis, F., El-Guerche, S.C., Paget, J. Important changes in the timing of influenza epidemics in the WHO European Region over the past 20 years: virological surveillance 1996 to 2016. Euro Surveillance, 2018, vol. 23, iss. 1. DOI: 10.2807/1560-7917.ES.2018.23.1.17-00302.
Steiner, S. H., Grant, K., Coory, M., Kelly, H. A. Detecting the start of an influenza outbreak using exponentially weighted moving average charts. BMC Medical Informatics and Decision Making, 2010, vol. 10, 37. DOI: 10.1186/1472-6947-10-37.
Solgi, M., Karami, M., Poorolajal, J. Timely detection of influenza outbreaks in Iran: evaluation the performance of the exponentially weighted moving average. Journal of Infection and Public Health, 2018, vol. 11, iss. 3, pp. 389-392. DOI: 10.1016/j.jiph.2017.09.011.
Choi, S. B., Kim, J., Ahn, I. Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries. PLoS ONE, 2019, vol. 14, iss. 11, DOI: 10.1371/journal.pone.0220423.
He, Z., Tao, H. Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: a nine-year retrospective study. International Journal of Infectious Diseases, 2018, vol. 74, pp. 61-70. DOI: 10.1016/j.ijid.2018.07.003.
Zhu, G., Li, L., Zheng, Y., Zhang, X., Zou, H. Forecasting influenza based on autoregressive moving average and holt-winters exponential smoothing models. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2021, vol. 25, iss. 1, pp. 138-144. DOI: 10.20965/JACIII.2021.P0138.
Kushnir, M., Tokareva, K. Artificial intelligence systems in the financial market predictions: literature review. Radioelectronic and Computer Systems, 2020, no. 3(95), pp. 108-117. DOI: 10.32620/reks.2020.3.11.
Izonin, I., Tkachenko, R., Dronyuk, I., Tkachenko, P., Gregus, M., Rashkevych, M. Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Mathematical Biosciences and Engineering, 2021, vol. 18, iss. 3, pp. 2599-2613. DOI: 10.3934/mbe.2021132.
Yesina, V., Matveeva, N., Chumachenko, I., Manakova, N. Method of Data Openness Estimation Based on User-Experience in Infocommunication Systems of Municipal Enterprises. 2018 International Scientific-Practical Conference on Problems of Infocommunications Science and Technology, PIC S and T 2018 – Proceedings, 2019, pp. 171–176. DOI: 10.1109/INFOCOMMST.2018.8631897.
Fedorov, E., Chychuzhko, M., Chychuzhko, V. Approaches to the creation of a software agent based on meta-heuristic and artificial neural networks. Radioelectronic and Computer Systems, 2019, no. 1(89), pp. 58-65. DOI: 10.32620/reks.2019.1.06.
Fedushko, S., Ustyianovych, T. Operational Intelligence Software Concepts for Continuous Healthcare Monitoring and Consolidated Data Storage Ecosystem. Advances in Intelligent Systems and Computing, 2021, vol. 1247, pp. 545–557. DOI: 10.1007/978-3-030-55506-1_49.
Nechyporenko, A., Reshetnik, V., Alekseeva, V., Yurevych, N., Nazaryan, R., Gargin, V. Assessment of measurement uncertainty of the uncinated process and middle nasal concha in spiral computed tomography data. 2019 IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology, PIC S and T 2019 - Proceedings, 2019, pp. 585-588. DOI: 10.1109/PICST47496.2019.9061557.
Dotsenko, S. Intellectual systems: principles of the heuristic self-organization of the processes of sense thinking and sense activity. Radioelectronic and Computer Systems, 2020, no. 2(94), pp. 4-21. DOI: 10.32620/reks.2020.2.01.
Abramov, S., Krivenko, S., Roenko, A., Lukin, V., Djurovic, I., Chobanu, M. Prediction of filtering efficiency for DCT-based image denoising, Proceedings – 2013, 2nd Mediterranean Conference on Embedded Computing, MECO 2013, 2013, pp. 97. DOI: 10.1109/MECO.2013.6601327.
Saha, P., Ghorai, S., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N. Tea Quality Prediction by Autoregressive Modeling of Electronic Tongue Signals. IEEE Sensors Journal, 2016, vol. 16, no. 11, pp. 4470-4477. DOI: 10.1109/JSEN.2016.2544979.
Wang, Y., Guo, Y. Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost, China Communications, 2020, vol. 17, no. 3, pp. 205-221. DOI: 10.23919/JCC.2020.03.017.
Ogino, Y., Satoh, Y., Sakata, O. Forecasting Bowel Sound Occurrence Frequency by SARIMA Model. 2019 23rd International Computer Science and Engineering Conference (ICSEC), 2019, pp. 219-223, DOI: 10.1109/ICSEC47112.2019.8974803.
Tayeb, H. F., Karabatak, M., Varol, C. Time Series Database Preprocessing for Data Mining Using Python. 2020 8th International Symposium on Digital Forensics and Security (ISDFS), 2020, pp. 1-4, DOI: 10.1109/ISDFS49300.2020.9116260.
DOI: https://doi.org/10.32620/reks.2021.4.02
Refbacks
- There are currently no refbacks.
