CONDUCTING AERODYNAMIC ANALYSIS OF THREE-DIMENSIONAL MODELS OF QUADCOPTER PROPELLERS
Abstract
The widespread use of multicopters, in particular quadcopters, in the civil, industrial and defense sectors necessitates the improvement of their aerodynamic characteristics in order to increase maneuverability, energy efficiency, load carrying capacity and reduce noise level. One of the key elements affecting these characteristics is the design of the propellers. Despite significant progress in the research of propellers for classical aviation, research for multicopters remains quite limited.
The aim of the work is to conduct a comparative aerodynamic analysis of four three-dimensional models of the HQProp V1S 7x3.5x3 propeller using the modern SolidWorks Flow Simulation software. The research methodology involves computer modeling of three-dimensional models of the real propeller, created by the author using the master-model method and the shell method, as well as 3D models obtained from specialized internet resources.
The main parameters of the analysis are the distribution of air flow velocities, pressure distribution, calculation of lift and drag force, as well as the influence of the angle of attack on the aerodynamic properties of the studied samples. The results of mathematical calculations demonstrate the differences between the models.
The scientific novelty and practical significance of the research is that the author obtained original data on the aerodynamic characteristics of 3D models of the HQProp V1S 7x3.5x3 propeller, which were not previously published in the open press. The mathematical modeling technique used and the results obtained thanks to it will be used in the future to design new, more advanced propeller models, which will contribute to improving the overall efficiency of the UAV.
Keywords
Full Text:
PDF (Українська)References
Dahal, C. Design and Analysis of Propeller for High-Altitude Search and Rescue Unmanned Aerial Vehicle [Text]/ Chiranjivi Dahal, Hari Bahadur Dura, Laxman Poudel// International Journal of Aerospace Engineering. – 2021. – Vol.2021, Iss. 1, Article no. 6629489. –13 p. DOI: 10.1155/2021/6629489,
Aerodynamic Performance of Propellers for Multirotor Unmanned Aerial Vehicles: Measurement, Analysis, and Experiment [Text]/ Zihao Jiang, Hang Zhao, Siyu Pei [et al.]// Shock and Vibration. – 2021. – Vol. 2021, Iss. 1, Article no. 9538647. – 11 p. DOI: 10.1155/2021/9538647.
Estimation of the thrust coefficient of a Quadcopter Propeller using Computational Fluid Dynamics. Faraz Ahmad et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1116 012095. DOI: 10.1088/1757-899X/1116/1/012095
Li, W.; Wu, B. Computational fluid dynamics investigation of aerodynamics for agricultural drones. Comput. Electron. Agric. 2024, 227, 109528. DOI: 10.1016/j.compag.2024.109528.
Baba Saheb K, Sandeep Thapa, Shiva Sai G, Raghavendra B. CFD Analysis of Quad-Copter Propeller by Changing the Geometry, Number of Blades, and Materials. Int. Res. J. Adv. Sci. Hub. 2024. DOI: 10.47392/IRJASH.2024.005.
Ganesan, T.; Jayarajan, N. Aerodynamic Analysis of Mathematically Modelled Propeller for Small UAV Using CFD in Different Temperature Conditions. Stroj. Vestn. J. Mech. Eng. 2023, 69, 444–454. DOI: 10.5545/sv-jme.2023.601.
Dbouk, T.; Drikakis, D. Computational aeroacoustics of quadcopter drones. Appl. Acoust. 2022, 192, 108738. DOI: 10.1016/j.apacoust.2022.108738.
Chen, M.; Wimsatt, J.; Liu, T.; Fang, T. Experimental and Numerical Study of a UAV Propeller Printed in Clear Resin. Aerospace 2025, 12, 362. DOI: 10.3390/aerospace12050362.
D. B. Spalding, B. E. Launder, A. P. Morse and G. Maple, Combustion of hydrogen-air jets in local chemical equilibrium (a guide to the CHARNAL computer program) NASA CR-2407 (1974). Доступно за адресою: https://ntrs.nasa.gov/citations/19740021525
J. Gorman, S. Bhattacharyya, L. Cheng, and J. P. Abraham, “Turbulence models commonly used in CFD,” in Applications of Computational Fluid Dynamics Simulation and Modeling: IntechOpen, 2021, DOI: 10.5772/intechopen.99784.
Мартинюк, А. М.. Особливості побудови тривимірних моделей реальних гвинтів квадрокоптерів. Відкриті інформаційні та комп'ютерні інтегровані технології, [S.l.], n. 103, p. 149-162, трав. 2025. ISSN 2663-2411. Доступно за адресою: http://nti.khai.edu/ojs/index.php/oikit/article/view/2839. DOI: 10.32620/oikit.2025.103.12.
GrabCAD [Electronic resource]// GrabCAD [website]. – URL: https://grabcad.com/library/hqprop-dp-7x3-5x3-v1s-1. – Назва з екрана.– Дата перегляду: 5.08.2025.
NACA Airfoil Tools [Electronic resource]// Airfoil Tools [website]. – URL: http://airfoiltools.com/index. – Назва з екрана .– Дата перегляду: 5.08.2025.
Anderson, John D., Jr., Cadou, Christopher P. Fundamentals of Aerodynamics. 7th ed. New York: McGraw-Hill Education, 2023. 1142 p.
Українські пропелери. Порівняння ефективності, тяги і вібрацій [Електронний ресурс]// YouTube. – URL: https://www.youtube.com/watch?v=_FxBDShPBQA. – Назва з екрана.– Дата перегляду: 5.08.2025.
DOI: https://doi.org/10.32620/oikit.2025.105.13
Refbacks
- There are currently no refbacks.