MODELING OF ELECTROEROSION PROCESSES ON GRAPHITE ELECTRODES IN THE FORMATION OF NANOSTRUCTURES IN A PLASMA MEDIUM
Abstract
The theoretical model of erosion processes in electrode spots during vacuum discharge during nanostructure formation is developed in the work. In this model the sources and drains of heat in electrode spots are considered in detail. Thus, the heat flux density generated by ions taking into account the emission cooling, reverse electric current and Nottingham heat is taken into account for the cathode, and both positive anode and negative potential declines are considered in describing the surface heat source for the anode. The distribution of current density in the element of the considered electrode volume was considered in sufficient detail for describing the volumetric heat source. Heat transfer from plasma radiation and convective heat transfer, and heat dissipation due to the shift of the plasma evaporation front and its radiation were considered for a more comprehensive description of the heat balance equation. The heat flux due to the movement of the stain was also taken into account. Thanks to the proposed model, the temperature fields near the spots and the rate of evaporation of the material during the life of the spot were determined, which allowed to determine the erosion coefficient for the electrode spot. According to the proposed model, calculations were performed for graphite electrodes. The dependence of the erosion coefficient on the lifetime of the spot and the current density at the electrodes is obtained. It is determined that at current density of more than 1011 A / м2 the probability of material emission in the form of clusters increases, which will prevent the appearance of nanostructures. Dependences of the erosion coefficient on the lifetime were obtained for both stationary and moving spots. The obtained dependences indicate the significant decrease in the erosion coefficient with increasing velocity of the spots. The determined theoretical values of current density coincide in order with the experimental values. The model can be used to determine the critical values of technological parameters in obtaining nanostructures for different electrode materials.
Keywords
Full Text:
PDF (Українська)References
Beilis, I.I. Thin Film Deposition by Plasma Beam of a Vacuum Arc with Refractory Anodes. / I. I. Beilis, R. Boxman, A. Pogrebnjak, V. Novosad // In: Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. – 2019. – Р. 1-15.
Glukhov, O.V. Nanostructured Coatings Based on Amorphous Carbon and Gold Nanoparticles Obtained by the Pulsed Vacuum-arc Method / O.V. Glukhov, A.Ya. Kolpakov, M.G. Kovaleva, V.M. Beresnev, S.S. Manokhin, A.I. Poplavsky, A.N. Khmara, M.V. Mishunin, M.E. Galkina, J.V. Gerus, M.N. Yapryntsev, V.V. Sirota, O.V. Glukhov // Journal of nano- and electronic physics. – 2019. – Vol. 11, No. 4. – P. 04019.
Wang, D. Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing. / D. Wang and T. Namihira // Plasma Sources Science and Technology. – 2020. – № 29. – Р. 023001.
Перспективы применения лазерной обработки для создания наноструктур на РИ из «ВолКар» / Г. И. Костюк, Ю. В. Широкий / Вісник НТУ «ХПІ». Серія: Технології в машинобудуванні. – Харків: НТУ «ХПІ», 2017. – № 26(1248). – С. 60–65.
Zolotukhin, D. B. Optimization of discharge triggering in micro-cathode vacuum arc thruster for CubeSats. / D. B. Zolotukhin, M. Keidar // Plasma Sources Science and Technol.– 2018. – № 27. – Р. 1361–6595.
Levchenko, I. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. / Levchenko, I., Xu, S., Teel, G., et all // Nat Commun. – 2018. – № 9. – Р. 879.
Balanovskiy A. E. Digital visualisation of the process of heating and melting of metal in arc discharge with a non-consumable electrode, Welding International. – 2017.– № 31(6). – Р. 467–476
.
Babaeva, N. Y. The role of fast electrons in diffuse discharge formation: Monte Carlo simulation. / N. Y. Babaeva, C. J. Zhang, Q. X. Hou, et al// Plasma Sources Sci. Technol. – 2017. – № 26 (8).– Р. 085008.
Nikolaev, A.G. Effect of the discharge parameters on the generation of deuterium ions in the plasma of a high-current pulsed vacuum arc with a composite zirconium deuteride cathode. / A.G. Nikolaev, E.M .Oks, V.P. Frolova et all // Tech. Phys. – 2017. – № 62. – Р. 701–707.
Белан, Н. В. Физические основы стойкости электродов плазменных ускорителей и технологических плазменных устройств / Н. В. Белан, Г. И. Костюк, Е. П. Мышелов. // Харьков. – 1986. – С. 205.
Medhisuwakul, N. Development and application of cathodic vacuum arc plasma for nanostructured and nanocomposite film deposition, N. Medhisuwakul, S. Pasaja, et all Surface and Coatings Technology. – 2013. – №29. – P. 36–41.
Timerkaev, B.A. Creation of Silicon Nanostructures in Electric Arc Discharge. / B. A. Timerkaev, B. R. Shakirov & D. B. Timerkaeva // High Energy Chem. – 2019. – № 53. – P. 162–166.
Beilis I. Cathode Spot Jets. Velocity and Ion Current. In: Plasma and Spot Phenomena in Electrical Arcs. Springer Series on Atomic, Optical, and Plasma Physics. – 2020. – Р. 113.
Kostyuk, G. Efficiency and Performance of Milling Using Cutting Tools with Plates of a New Class. / G. Kostyuk, V. Popov, Y. Shyrokyi, H. Yevsieienkova // In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer. – 2021. – № 2. – Р. 598–608.
Сысоев Ю. А. Проблемы ионно-плазменных технологий на основе вакуумно-дугового разряда и пути их решения / Ю. А. Сысоев // Авиационно-космическая техника и технология. – 2011. – № 7. – С. 38–43.
Baranov, O. Current Distribution on the Substrate in a Vacuum Arc Deposition Setup. / O. Baranov, M. Romanov, // Plasma Processes and Polymers. – 2008. – № 5. – Р. 256.
Baranov, O. Control of ion density distribution by magnetic traps for plasma electrons. / O. Baranov, M. Romanov, J. Fang, U. Cvelbar, K. Ostrikov // Journal of Applied Physic. – 2012. – № 112 (7). – Р. 073302.
Beilis, I. I. Anode Temperature Evolution in a Vacuum Arc with a Blackbody Electrode Configuration. / I. I. Beilis, Y. Koulik et all // in IEEE Transactions on Plasma Science. – 2017. – № 45 (8). – Р. 234–236.
Anders, A. The evolution of ion charge states in cathodic vacuum arc plasmas: a review / A. Anders // Plasma Sources Science and Technology. – 2012. – №21 (3). – P.458.
Beilis, I. I. Vacuum arc cathode spot grouping and motion in magnetic fields / I. I. Beilis // in IEEE Transactions on Plasma Science. – 2002. – № 30 (6). – Р. 2124-2132.
Yinghe, Ma Imaging and motion of cathode group spots during pulse-enhanced vacuum arc evaporation / Yinghe Ma, Chunzhi Gong, Xiubo Tian, Paul K. Chu // Vacuum. – 2017. – № 139. – Р, 37–43.
Hermanns, P. Formation and behaviour of plasma spots on the surface of titanium film / P. Hermanns, F. Kogelheide, V. Bracht, S. Rie, F. Krüger, S. Böddeker // Journal of Physics D: Applied Physics. – 2020. – № 54 (8). – Р 085203.
Böddeker S. Anode spots of low current gliding arc plasmatron / S. Boddeker, V. Bracht, P. Hermanns, S. Groeger, F. Kogelheide, N. Bibinov, P. Awakowicz, //Plasma Sources Science and Technology. – 2020. – № 29 (8). – Р. 1–10.
Nikolaev, A.G. Effect of the discharge parameters on the generation of deuterium ions in the plasma of a high-current pulsed vacuum arc with a composite zirconium deuteride cathode. / , A.G. Nikolaev, E.M Oks, V.P. Frolova, et // Tech. Phys. – 2017. – № 62. – Р. 701–707.
Zhou, Z. Direct observation of vacuum arc evolution with nanosecond resolution. / Z. Zhou, A. Kyritsakis, Z. Wang, et al. //Sci Rep. – 2019. – № 9. – Р. 7814.
Mesyats, G. A. Ecton Mechanism of the Cathode Spot Phenomena in a Vacuum Arc / G. A. Mesyats // in IEEE Transactions on Plasma Science. – 2013. – № 41 (4). – Р. 676–694.
Keidar, M, Arc plasma synthesis of carbon nanostructures: where is the frontier? M. Keidar, A. Shashurin, J. Li, O. Volotskova, M. Kundrapu, T. S. Zhuang. Journal of Physics D: Applied Physics. – 2011. – № 44(17). – P. 174006.
Shyrokyj, Y.V. Simulation of an arc discharge on copper cathode for the generation of nanostructures / Y.V. Shyrokyi, G. I. Kostyuk //Open Information and Computer Integrated Technologies, – № 91. – 2021. – С. 62–76.
Barengolts, S. A. Effect of the Nanostructured Layer Thickness on the Dynamics of Cathode Spots on Tungsten, / S. A. Barengolts, V. G. Mesyats, M. M. Tsventoukh, S. Kajita, D. Hwangbo and N. Ohno // in IEEE Transactions on Plasma Science. – 2018. – №46 (11). – Р. 4044–4050.
Rao, L. Vacuum arc velocity and erosion rate measurements on nanostructured plasma and HVOF spray coatings. / L. Rao, R. J Munz and J.- L. Meunier, // Journal of Physics D: Applied Physicsю ¬– 2007. – №14 (40). – Р. 4192-4201.
Параметры катодных и анодных пятен в технологических плазменных устройствах (эксперимент) / Г.И. Костюк, Ю.В. Широкий, А.Н. Костюк, И.В. Леонова // Открытые информационные и компьютерные технологии. – 2013, – № 60ю – С.155–164.
Hwangbo, D. Transition in velocity and grouping of arc spot on different nanostructured tungsten electrodes / D. Hwangbo, S. Kajita, S. A. Barengolts, M. M. Tsventoukh, N. Ohno // Results in Physics. – 2014. – № 4, Р. 33–39.
Shin Kajita, Noriyasu Ohno, Shuichi Takamura, Yoshiyuki Tsuji, Direct observation of cathode spot grouping using nanostructured electrode, Physics Letters Aю – 2009. – № 373 (46). – P. 63–75.
Levchenko, I. Ion deposition in a crossed E × B field system with vacuum arc plasma sources. / I. Levchenko, M. Romanov, O. Baranov, M. Keidar // Vacuum. – 2003. – № 72(3). – Р. 335–344.
Baranov, O.O. Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. / O.O. Baranov, J. Fang, A. E. Rider, S. Kumar, K Ostrikov // IEEE Transactions on Plasma Science. – 2013. – № 41(12). – Р. 3640–3644.
Beilis, I. I.: Cathode Spot Development on a Bulk Cathode in a Vacuum Arc. / I. Beilis // I. IEEE Transactions on Plasma Science. – 2013. №41(8). – Р.1979–1986.
Особенности теоретического рассмотрения процессов в электродных пятнах вакуумного разряда / ГИ Костюк, ЮВ Широкий, АН Костюк // Открытые информационные и компьютерные технологии. – 2013. – № 60. – С.128–141.
DOI: https://doi.org/10.32620/oikit.2021.94.06
Refbacks
- There are currently no refbacks.