RESEARCH OF NAVIGATION AND CARTOGRAPHY AL-GORITHMS FOR UNMANNED AERIAL VEHICLE

Ю. М. Толкунова, Д. О. Подколзіна

Abstract


The methods of navigation of an unmanned aerial vehicle (UAV) are considered. The main focus is on navigation methods that reduce the operator's activities to setting the current task and monitoring the operation of the UAV. The UAV must independently assess the environment and plan its path, including in the presence of other moving objects. The solution of control and navigation tasks for UAVs without a remote control significantly facilitates the operator's task, but requires the development of a UAV control system. These tasks include the task of automatically returning the UAV in case of loss of communication with the operator, the solution of which increases the reliability of the navigation system. The change in the nature of the operator's activity, who now does not directly control the movements of the UAV, leads to a change in the nature of the control system. One of the ways to solve this problem is to use an optical navigation system. The analysis of methods and algorithms for optical navigation of an unmanned aerial vehicle: algorithms for local navigation and cartography, correlation-extreme navigation methods and methods of visual odometry. The advantages and disadvantages of optical navigation methods are considered. The use of visual odometry methods has advantages over other methods, but it also has disadvantages associated with the accumulation of errors in the course of the method. Variations of algorithms for simultaneous localization and mapping (SLAM) based on the use of cameras are called visual SLAM. The visual SLAM and visual odometry methods are analyzed. Hybrid SLAM methods solve the problem of error accumulation.

The use of UAVs for studying geological processes of the coastline of reservoirs and seas is analyzed. The advantages of using SLAM algorithms for monitoring the state of the coastline are considered. It is concluded that the use of SLAM algorithms for assessing the density of the erosion network of the coastline of reservoirs and seas makes it possible to obtain images without geometric distortions, an optical navigation system based on these algorithms greatly facilitates the operator's task, and will allow the UAV to be returned in case of loss of communication with the operator.


Keywords


optical navigation system, unmanned aerial vehicle, algorithms for local navigation and cartography, coastal monitoring

References


Сырямкин, В.И., Шидловский, В.С. Корреляционно-экстремальные радиона-вигационные системы [Текст] / В.И. Сырямкин, В.С. Шидловский. − Томск: Изд-во Том. ун-та, 2010. − 316 с.

Баклицкий, В.К. Корреляционно-экстремальные методы навигации и наведения [Текст] / В.К. Баклицкий. − Тверь: ТО «Книжный клуб», 2009. − 360 с.

Dorian, G.-L. Marta, S., Juan, D. T., Montiel, J.M.M. Real-time monocular object SLAM. Robotics and Autonomous Systems 2016, 75, pp. 435–449.

Folkesson, J., Leederkerken, J., Williams, R., Patrikalakis, A., Leonard, J.A. A Feature Based Navigation System for an Autonomous Underwater Robot. Pro-ceedings of the sixth edition of Field and Service Robotics, Chamonix, France, 9–12 July 2007; Laugier C., Siegwart R. Eds; Springer Tracts in Advanced Robotics Springer: Berlin, Germany, 2008, pp.105–114.

Nist´er, D., Naroditsky, O., Bergen, J. Visual odometry for ground vehicle applica-tions. Journal of Field Robotics. – 2006. – Vol. 23 (1), pp. 3-20.

Engel J., Schops T., Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. European Conference on Computer Vision, Springer, Vol. 8690, 2014, pp.834–849.

Diosi, A., Kleeman, L., Laser scan matching in polar coordinates with application to SLAM. Proceedings of IEEE/RSJ International Conference on Intelligent Ro-bots and Systems (IROS 2005). – 2005, pp. 3317- 3322.

Riisgaard, S., Blas, M. A tutorial approach to simultaneous localization and map-ping. Massachusetts Institute of Technology, Mobile Robotics course materials. – 2012. 127 p.

Кэ., Кэ. Гэн. Автономная система управления полетом квадрокоптера с воз-можностью облета препятствий и комплексной навигацией [Текст]: дис. … к-та техн. наук: 05.13.01; защищена 2017 / Ген Кэ Кэ – М., 2017. – 158 с.

Панков, В.Д., Шульга, В.А.. Сравнение алгоритмов локализации ORB-SLAM и LSD-SLAM [Текст] //«Молодой учёный» . № 27 (213). – М., 2018. – с. 16-18.

Caballero, F., Merino, L., Ferruz, J., Ollero, A. Vision-Based Odometry and SLAM for Medium and High Altitude Flying UAVs. Journal of Intelligent Robotics System. – 2009. – Vol. 54., Issue 1-3, pp. 137 – 161.

Bobkov, V. A., Ron’shin, Yu. I., Kudryashov, A. P., Mashentsev, V. Yu.. 3D SLAM from Stereoimages. Programming and Computer Software, 2014, Vol. 40, No. 4, 2014, pp. 159–165.

Olson E. Recognizing places using spectrally clustered local matches. Robotics and Autonomous Systems, vol. 57, No. 12, December 2009, pp. 1157–1172.

Williams, B., Cummins M., Neira J., Newman P., Reid I., Tardos J. A comparison of loop closing techniques in monocular SLAM Robotics and Autonomous Sys-tems 57 (12), pp. 1188-1197.

Cadena, C., Galvez, D., Ramos, F., Tardos, J., Neira, J. Robust place recognition with stereo cameras. In Proc. IEEE / RJS Int. Conference on Intelligent Robots and Systems. Taipei, Taiwan, 2010, pp.5182-5189.

Савин, И.Ю., Вернюк, Ю.И., Фараслис, И. Возможности использования бес-пилотных летательных аппаратов для оперативного мониторинга продук-тивности почв // Бюллетень Почвенного института им. В.В. Докучаева. – 2015. – Вып. 80. – С. 95-105.

Скрипка, Г.И., Ивлиева, О.В., Беспалова, Л.А., Филатов, А.А., Сапрыгин, В.В. Мониторинг опасных береговых процессов Цимлянского водохранилища с использованием ГИС-технологий // Географические информационные си-стемы и технологии. – 2020. – Том 26. №2 – С. 253-263.

Воскресенский, И.С., Сучилин, А.А., Ушакова, Л.А., Шафоростов, В.М., Энтин, А.Л. Применение БПЛА для мониторинга оползневых и эрозийных про-цессов (на примере центра Русской равнины) // Материалы Всероссийской научно-практической конференции. – Иркутск: Издательство Института гео-графии им. В.Б. Сочавы СО РАН, – 2018. – С. 42-47.

Rituerto, A., Puig, L., Guerrero, J. Visual SLAM with an omnidirectional camera. 2010 20th International Conference on Pattern Recognition CPR 2010, 23–26 August 2010, Istanbul, Turkey: proceedings, pp. 348–351.

Guofeng, Tong, Zizhang, Wu, NingLong, Weng, Wenbo, Hou. An Omnidirectional vSLAM based on spherical camera model and 3D modeling. Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, 2012, pp. 4551–4556.




DOI: https://doi.org/10.32620/oikit.2021.91.12

Refbacks

  • There are currently no refbacks.