SIMULATION OF AN ARC DISCHARGE ON A COPPER CATHODE FOR THE GENERATION OF NANOSTRUCTURES
Abstract
The paper considers the model of processes acting in the ionization layer of the cathode assembly during plasma generation of nanostructures. In the given model the processes in electrodynamic and gas - dynamic layers of plasma and their coordination are rather densely considered. Therefore, the solution of the model allows to adequately determine the magnitude of the cathode potential jump in the electrodynamic layer, which allows to compensate for all energy losses during the generation of nanostructures, and the magnitude of ion and electron fluxes at the cathode. The calculations were performed at a constant value of the elongation of the ionization layer, because it has little effect on the change in the ion current density along the length of the cathode layers. Also, the calculations confirmed a non-significant dependence of the initial pressure from the ionization layer on the temperature of the electrons. The obtained dependences, the fraction of ionic current at the cathode and the cathode potential drop from the current density at different cathode temperatures, showed that the change in the proportion of ionic current makes it possible to compensate for energy costs to maintain the cathode temperature. And consideration of the equation of energy balance allowed to establish the range of losses of the working fluid at which it is possible not to take into account the energy of evaporation of the working fluid and steam heating. To determine the current density at the cathode, the dependence of the thermoemission current on the cathode temperature and the dependence of the current density on the cathode on the plasma concentration at different cathode drops and different representations of electric field strengths were obtained. This allowed to determine the cathode temperature due to the ionic current density and to estimate the plasma concentration. Depending on the plasma concentration, the electric transfer coefficient for different emission mechanisms and cathode drops is obtained. All this allowed us to determine the dependence of the specific gravity leaving the cathode per unit time per unit area, on the cathode temperature and heat flux density for the copper cathode. Determining the specific gravity and the transfer coefficient makes it possible to determine the life of the cathode during plasma generation of nanostructures.
Keywords
Full Text:
PDF (Українська)References
Beilis, I. I. Cu film deposition using a vacuum arc with a black-body electrode assembly / I. I. Beilis, Y. Koulik, R. L. Boxman // Surface and Coatings Technology. – 2014. – № 258. – P. 908–912.
Takikawa, H. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films / H. Takikawa and H. Tanoue // Transactions on Plasma Science, – 2007. – № 35. – Р. 992–999.
Schultrich B. Methods of Vacuum Arc Deposition of ta-C Films. / Schultrich B // In: Tetrahedrally Bonded Amorphous Carbon Films I. Springer Series. in Materials Science. – Berlin 2018. – № 263.– Р. 721–738.
Vorob'ev, V. Plasma arising during the interaction of laser radiation with solids. / V. Vorob'ev // Physics-Uspekhi. – 2007. – № 36. – P. 1129.
Beilis, I. Application of vacuum arc cathode spot model to graphite cathode / I. Beilis // IEEE Transactions on Plasma Science. – 1999. – № 27. – Р. 821–826.
Karpov, D. A. Cathodic arc sources and macroparticle filtering. / D.A.Karpov // Surface and Coatings Technology. – 1997. – № 96. – P. 22–33,
Beilis, I. Electrode Erosion. Macroparticle Generation. In: Plasma and Spot Phenomena in Electrical Arcs / I. Beilis //Springer Series on Atomic, Optical, and Plasma Physics. – 2020. – № 113. – Springer, Cham.
On the growth and electrical characterization of CuO nanowires by thermal oxidation / K. Bazaka, O. Baranov, U. Cvelbar, B. Podgornik, Y. Wang, S.Huang, L. Xu, J. W. M. Lim, I. Levchenko, S. Xu // Nanoscale. – 2018. – № 10. – P. 17494–1751.
Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis / O. Baranov, K. Bazaka, H.Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko // Applied Physics Reviews. – 2017. – № 4. – P. 041302.
Keidar, M. Macroparticle interaction with a substrate in cathodic vacuum arc deposition. / M. Keidar, I. Beilis, R. L., Boxman& S. Goldsmith// Surface & Coatings Technology. – 1996. – № 86(87). – Р 415–420.
Острецов, И.Н. Об уравнении термоэлектронной эмиссии в плазму. / И. Н. Острецов, В. А. Петросов, А. А. Поротников, Б. Б. Родневич // ПМТФ. – 1972. – № 3. – С. 17–28.
Сысоев Ю. А. Проблемы ионно-плазменных технологий на основе вакуумно-дугового разряда и пути их решения / Ю. А. Сысоев // Авиационно-космическая техника и технология. – 2011. – № 7. – С. 38–43.
Белан, Н. В. Физические основы стойкости электродов плазменных ускорителей и технологических плазменных устройств / Н. В. Белан, Г. И. Костюк, Е. П. Мышелов // Харьков. – 1986. – С. 205.
Костюк, Г. И. Исследование влияния энергии ионов, их сорта и заряда на величину объема наноструктуры и эффективной плотности тока для получения наноструктур / Г. И. Костюк, Е. Г. Костюк, Л. В. Лобанова // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Технологии в машиностроении. – Харьков: НТУ "ХПИ". – 2012. – № 53 (959). – С. 165–174.
Костюк, Г.И. Особенности теоретического рассмотрения процессов в электродных пятнах вакуумного разряда /Г. И. Костюк, Ю. В. Широкий, А.Н.Костюк // Открытые информационные и компьютерные технологии. – 2013. – № 60. – С 128–141.
Костюк Г.И. Физико-технические основы напыления покрытий, ионной имплантации и ионного легирования, лазерной обработки и упрочнения, комбинированных технологий / Г.И. Костюк // Киев: Изд-во АИНУ. – 2002. – С. 1030.
Костюк, Г. И. Параметры катодных и анодных пятен в технологических плазменных устройствах (эксперимент) / Г. И. Костюк, Ю. В. Широкий, А. Н. Костюк, И. В. Леонова // Открытые информационные и компьютерные технологии. – 2013. – № 60. – С. 155–164.
DOI: https://doi.org/10.32620/oikit.2021.91.05
Refbacks
- There are currently no refbacks.