A method for improving the robustness of neural network for aerial image matching
Abstract
Keywords
Full Text:
PDF (Українська)References
Budzan, S., Wyżgolik, R., & Lysko, M. Performance analysis of keypoints detection and description algorithms for stereo vision based odometry. Sensors, 2025, vol. 25, iss. 19, article no. 6129. DOI: 10.3390/s25196129.
Hidalgo, F., & Bräunl, T. Evaluation of several feature detectors/extractors on underwater images towards vSLAM. Sensors, 2020, vol. 20, iss. 15, article no. 4343. DOI: 10.3390/s20154343.
Xu, S., Chen, S., Xu, R., Wang, C., Lu, P., & Guo, L. Local feature matching using deep learning: A survey. Information Fusion, 2024, vol. 107, article no. 102344. DOI: 10.1016/j.inffus.2024.102344.
Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G., Cabon, Y., & Humenberger, M. R2D2: Repeatable and reliable detector and descriptor. arXiv, 2019. DOI: 10.48550/arXiv.1906.06195.
Fukushima, S., Kang, H., & Miyanishi, Y. Decay rate of the eigenvalues of the Neumann–Poincaré operator. arXiv, 2023. DOI: 10.48550/arXiv.2304.04772.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., & Rabinovich, A. SuperGlue: Learning feature matching with graph neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020), IEEE, 2020, pp. 4937–4946. DOI: 10.1109/CVPR42600.2020.00499.
Lindenberger, P., Sarlin, P.-E., & Pollefeys, M. LightGlue: Local feature matching at light speed. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2023). DOI: 10.1109/ICCV51070.2023.01616.
Yan, J., Deng, X., Yin, H,.& Ge, W. On procedural adversarial noise attack and defense. arXiv, 2021. DOI: 10.48550/arXiv.2108.04409.
Yan, J., Yin, H., Ge, W., & Liu, L. Exploring aesthetic procedural noise for crafting model-agnostic universal adversarial perturbations. Displays, 2023, vol. 79, article no. 102479. DOI: 10.1016/j.displa.2023.102479.
Kinnari, J., Verdoja, F., & Kyrki, V. Season-invariant GNSS-denied visual localization for UAVs. IEEE Robotics and Automation Letters, 2022, vol. 7, iss. 4, pp. 10232–10239. DOI: 10.1109/LRA.2022.3191038.
Yao, F., Lan, C., Wang, L., Wan, H., Gao, T., & Wei, Z. GNSS-denied geolocalization of UAVs using terrain-weighted constraint optimization. International Journal of Applied Earth Observation and Geoinformation, 2024, vol. 135, article no. 104277. DOI: 10.1016/j.jag.2024.104277.
Kim, J., Cho, Y., & Kim, J.. Urban localization based on aerial imagery by correcting projection distortion. Autonomous Robots, 2022, vol. 47, iss. 3, pp. 299–312. DOI: 10.1007/s10514-022-10082-5.
Jin, Y., Mishkin, D., Mishchuk, E., Matas, J., Fua, P., Yi, K. M., & Trulls, E. Image matching across wide baselines: From paper to practice. International Journal of Computer Vision, 2020, vol. 129, iss. 2, pp. 517–547. DOI: 10.1007/s11263-020-01385-0.
Śledziowski, J., Terefenko, P., Giza, A., Forczmański, P., Łysko, A., Maćków, W., Stępień, G., Tomczak, A., & Kurylczyk, A. Application of unmanned aerial vehicles and image processing techniques in monitoring underwater coastal protection measures. Remote Sensing, 2022, vol. 14, iss. 3, article no. 458. DOI: 10.3390/rs14030458.
Solovyeva, E., & Abdullah, A. Dual autoencoder network with separable convolutional layers for denoising and deblurring images. Journal of Imaging, 2022, vol. 8, iss. 9, article no. 250. DOI: 10.3390/jimaging8090250.
Qian, Z., Huang, K., Wang, Q.-F., & Zhang, X.-Y. A survey of robust adversarial training in pattern recognition: Fundamental, theory, and methodologies. Pattern Recognition, 2022, vol. 131, article no. 108889. DOI: 10.1016/j.patcog.2022.108889.
Xu, M., Yoon, S., Fuentes, A., & Park, D. S. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognition, 2023, vol. 137, article no. 109347. DOI: 10.1016/j.patcog.2023.109347.
Tang, C., Zhang, K., Xing, C., Ding, Y., & Xu, Z.-Q.J. Perlin noise improve adversarial robustness. arXiv, 2021. DOI: 10.48550/arXiv.2112.13408.
Sooksatra, K., & Rivas, P. Dynamic-max-value ReLU functions for adversarially robust machine learning models. Mathematics, 2024, vol. 12, iss. 22, article no. 3551. DOI: 10.3390/math12223551.
Paul, S., & Chen, P.-Y. Vision transformers are robust learners. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, vol. 36, iss. 2, pp. 2071–2081. DOI: https://doi.org/10.1609/aaai.v36i2.20103
Layton, O. W., Peng, S., & Steinmetz, S. T. ReLU, sparseness, and the encoding of optic flow in neural networks. Sensors, 2024, vol. 24, iss. 23, article 7453. DOI: 10.3390/s24237453.
Le, H., Hoier, R.K., Lin, C.-T., & Zach, C. AdaSTE: An adaptive straight-through estimator to train binary neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022), IEEE, 2022, pp. 460–469. DOI: 10.1109/CVPR52688.2022.00055.
Pogorzelski, T. P. Aerial image matching benchmark dataset [dataset]. IEEE DataPort, 2025. DOI: 10.21227/JD5S-AY89.
Balntas, V., Lenc, K., Vedaldi, A., Tuytelaars, T., Matas, J., &Mikolajczyk, K. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. pp. 1–1. DOI: 10.1109/TPAMI.2019.2915233.
Zhang, S., & Ma, J. DiffGlue: Diffusion-aided image feature matching. Proceedings of the 32nd ACM International Conference on Multimedia (MM ’24), ACM, 2024, pp. 8451–8460. DOI: 10.1145/3664647.3681069.
DOI: https://doi.org/10.32620/aktt.2025.5.07
