Definition of requirements and stepwise development of a diagnostic model algorithm for the TV3-117V gas turbine engine
Abstract
Keywords
Full Text:
PDF (Українська)References
Xiaofeng, L. I. U., Yingjie, C. H. E. N., Xiong, L., Jianhua, W. A. N. G., Chenshuang, L. U. O., Zhang, L., & Kehuan, W. A. N. G. Intelligent fault diagnosis methods toward gas turbine: A review. Chinese Journal of Aeronautics, 2024, no. 37 (4), pp. 93–120.
Chen, Z., Cao, S., & Mao, Z. Remaining useful life estimation of aircraft engines using a modified similarity and supporting vector machine (SVM) approach. Energies, 2017, no. 11 (1), pp. 28.
Catana, R. M., Dediu, G. Analytical Calculation Model of the TV3-117 Turboshaft Working Regimes Based on Experimental Data. Applied Sciences, 2023, no. 13 (19), article no. 10720.
Vladov, S. I., Shmelov, Yu M., Yakovliev. R. P. Control and diagnostics of TV3-117 aircraft engine technical state in flight modes using the matrix method for calculating dynamic recurrent neural networks. CMIS-2021: The Fourth International Workshop on Computer Modeling and Intelligent Systems (Zaporizhzhia, Ukraine, 27 April, 2021), 2021, pp. 97–109.
Volkov, D. I., & Lopunova, N. N. Optimizatsiya ob"ema nerelyatsionnoi bazy dannykh i vremeni dostupa k dannym pri mnozhestvennykh chastotakh registratsii parametrov [Optimization of database size and data access time to store parameters with multiple recording frequencies]. Aviacijno-kosmichna texnika i texnologiya -Aerospace Technic and Technology, 2018, no. 7 (151), pp. 107-111. doi: 10.32620/aktt.2018.7.16. (n Russian).
DOI: https://doi.org/10.32620/aktt.2025.4sup2.19