Mathematical modeling of the dynamic processes during check valve operation in the branched reconfigurable feed system of a liquid rocket engine
Abstract
Keywords
Full Text:
PDF (Українська)References
Pylypenko, O., Dolgopolov, S., Nikolayev, O., Khoriak, N., & Kvasha, Yu., Bashliy, I. Determination of the thrust spread in the Cyclone-4M first stage multi-engine propulsion system during its start. Science and Innovation, 2022, vol. 18, no. 6, pp. 97–112. doi: 10.15407/scine18.06.097.
Koptilyy, D., Marchan, R., Dolgopolov, S., & Nikolayev, O. Mathematical modeling of transient processes during start-up of main liquid propellant engine under hot test conditions. Proceedings of the 8th European Conference on Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July, 2019. 15 р. doi: 10.13009/EUCASS2019-236.
Marchan, R. A. Small-scale supersonic combustion chamber with a gas-dynamic ignition system. Combustion Science and Technology, 2011, vol. 183, no. 11, pp. 1236–1265. doi: 10.1080/00102202.2011.589874.
Marchan, R., Oleshchenko, A., Vekilov, S., Arsenuk, M., & Bobrov, O. 3D printed acoustic igniter of oxygen-kerosene mixtures for aerospace applications. Proceedings of the 8th European Conference on Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July. 2019. 14 р. doi: 10.13009/EUCASS2019-238.
Kuznetsov, V. I., & Shander, A. Yu. Hartmann–Sprenger effect and its application on aircraft. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering, 2019, vol. 3, no. 2, pp. 150–155. doi: 10.25206/2588-0373-2019-3-2-150-155.
Domagała, M., & Fabis-Domagała, J. A review of the CFD method in the modeling of flow forces. Energies, 2023, vol. 16, no. 16, article no. 6059. doi: 10.3390/en16166059.
Pusztai, T., & Siménfalvi, Z. CFD analysis on a direct spring-loaded safety valve to determine flow forces. Pollack Periodica, 2021, vol. 16, no. 1, pp. 109–113. doi: 10.1556/606.2020.00122.
Zong, C., Zheng, F., Chen, D., Dempster, W., & Song, X. CFD analysis of the flow force exerted on the disc of a direct-operated pressure safety valve in energy system. Journal of Pressure Vessel Technology, 2020, vol. 142, no. 1, article no. 011702. doi: 10.1115/1.4045131.
Finesso, R., & Rundo, M. Numerical and experimental investigation on a conical poppet relief valve with flow force compensation. International Journal of Fluid Power, 2017, vol. 18, no. 2, pp. 111–122. doi: 10.1080/14399776.2017.1296740.
Wu, D., Li, S., & Wu, P. CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system. Energy Conversion and Management, 2015, vol. 101, pp. 410–419. doi: 10.1016/j.enconman.2015.06.025.
Gomez, I., Gonzalez-Mancera, A., Newell, B., & Garcia-Bravo, J. Analysis of the design of a poppet valve by transitory simulation. Energies, 2019, vol. 12, no. 5, article no. 889. doi: 10.3390/en12050889.
Klas, R., Habán, V., & Rudolf, P. Analysis of in-line check valve with respect to the pipeline dynamics. EPJ Web of Conferences, 2017, vol. 143, article no. 02051. doi: 10.1051/epjconf/201714302051.
DOI: https://doi.org/10.32620/aktt.2025.4sup2.10