Review of ejector nozzles. Part 2 – Mixers and additional information
Abstract
Keywords
Full Text:
PDFReferences
Tsukanov, R., & Yepifanov, S. Review of Ejector Nozzles. Part 1 – Thrust Augmenting Ejector Nozzles. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2025, no. 4(204), pp. 45-59. doi: 10.32620/aktt.2025.4.07.
Povinelli, L. A., Anderson, B. H., & Gerstenmaier, W. Computation of Three-Dimensional Flow in Turbofan Mixers and Comparison with Experimental Data: NASA Technical Note TM81410, 1980. 13 p. Available at: https://ntrs.nasa.gov/api/citations/19800007105/downloads/19800007105.pdf (accessed 28.02.2025).
Paterson, R. W. Turbofan Forced Mixer-Nozzle Internal Flow Field. vol. 1 — A Benchmark Experimental Study: NASA Contractor Report 3492, 1982. 134 p. Available at: https://ntrs.nasa.gov/api/citations/19820014584/downloads/19820014584.pdf (accessed 28.02.2025).
Kozlowski, H., & Kraft, G. Experimental Evaluation of Exhaust Mixer for an Energy Efficient Engine. Proceeding of 16th AIAA/SAE/ASME Joint Propulsion Conference, Hartford, 30 June2 July, 1980, pp. 1–6. doi: 10.2514/6.1980-1088.
Paterson, R. W. Turbofan Mixer Nozzle Flow Field - A Benchmark Experimental Study. Journal of Engineering for Gas Turbines and Power, 1984, vol. 106, no. 3, pp. 692-698. doi: 10.1115/1.3239625.
Skebe, S., Paterson, R., & Barber, T. Experimen¬tal investigation of three-dimensional forced mixer lobe flow fields. Proceedings of the 1st National Fluid Dynamics Conference (AIAA), Cincinnati, OH, USA, 25–28 July 1988, article no. 19992006. doi: 10.2514/6.1988-3785.
Paynter, G. C., Birch, S. C., Spalding, D. B., & Tatchell, D. G. An Experimental and Numerical Study of the 3-D Mixing Flows of a Turbofan Engine Exhaust System. Proceeding of 15th AIAA Aerospace Science Meeting, Los Angeles, 24-26 January, 1977, pp. 112. doi: 10.2514/6.1977-204.
Roberts, D. W. Numerical Prediction of 3-D Ejector Flows. Proceeding of NASA Conference Publication 2093. Workshop on Thrust Augmentation Ejectors. Dayton, 28-29 June, 1978, article no. 5570. Available at: https://ntrs.nasa.gov/api/citations/19800001868/downloads/19800001868.pdf (accessed 25.01.2025).
Anderson, B. H., Polinelli, L. A., & Gertenmaier, W. Influence of Pressure Driven Secondary Flows on the Behavior of Turbofan Forced Mixers: NASA Technical Note TM81410, 1980. 28 p. Available at: https://ntrs.nasa.gov/api/citations/19800019131/downloads/19800019131.pdf (accessed 28.02.2025).
Tillman, T. G., Paterson, R. W., & Presz, W. M. Supersonic Nozzle Mixer Ejector. AIAA Journal of Propulsion and Power, vol. 8, no. 2, 1992, pp. 513-519. doi: 10.2514/3.23506.
Presz, W. M. Mixer/Ejector Noise Suppressors. Proceeding of 27th Joint Propulsion Conference, Sacramento, 24-26 June, 1991, article no. 110. doi: 10.2514/6.1991-2243.
Anderson, B. H., & Polinelli, L. A. Factors Which Influence the Behavior of Turbofan Forced Mixer Nozzles. Technical Memorandum NASA TM 81668, 1981. 29 p. Available at: https://ntrs.nasa.gov/api/citations/19810006725/downloads/19810006725.pdf (accessed 28.02.2025).
Werle, M. J., & Vasta, V. N. Turbofan Forced Mixer-Nozzle Internal Flow Field. vol. 2 — Computational Fluid Dynamic Predictions: NASA Contractor Report 3493, 1982. 94 p. Available at: https://ntrs.nasa.gov/api/citations/19820014585/downloads/19820014585.pdf (accessed 28.02.2025).
Kreskovsky, J. P., & Briley, W. R., McDonald, H. Investigation of Mixing in a Turbofan Exhaust Duct, Part I: Analysus and Computational Procedure. AIAA Journal, vol. 22, iss. 3, 1984, pp. 374-382. doi: 10.2514/3.48457.
Povinelli, L. A., & Anderson, B. H. Investiga¬tion of Mixing in a Turbofan Exhaust Duct, Part II: Computer Code Application and Verification. AIAA Journal, vol. 22, iss. 4, 1984, pp. 518-525. doi: 10.2514/3.8433.
Merati, P. Numerical Simulation of the Vortical Structures in a Lobed Jet Mixing Flow. Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA. January 10–13, 2005, article no. 113. doi: AIAA-2005-0635.
Henry, J. R. Design of Power-Plant Installations, Pressure-Loss Characteristics of Duct Components: ARR No. L4F26, 1944. 63 p. Available at: https://apps.dtic.mil/sti/tr/pdf/ADB804977.pdf (accessed 25.01.2025).
Salmi, R. J. Experimental Investigation of Drag of Afterbodies with Exiting Jet at High Subsonic Mach Numbers. Research memorandum NACA RM E54I13, 1954. 30 p. Available at: https://ntrs.nasa.gov/api/citations/19930088483/downloads/19930088483.pdf (accessed 25.01.2025).
Hearth, D. P., Englert, G. W., & Kowalski, K. L. Matching of Auxiliary Inlets to Secondary-Air Requirements of Aircraft Ejector Exhaust Nozzles. Research memorandum NACA RM E55D21, 1955. 41 p. Available at: https://ntrs.nasa.gov/api/citations/19930088670/downloads/19930088670.pdf (accessed 25.01.2025).
Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. 1 – Diameter Ratios of 1.21 and 1.10. Research memorandum NACA RM E52E21, 1952. 26 p. Available at: https://ntrs.nasa.gov/api/citations/19930087173/downloads/19930087173.pdf (accessed 25.01.2025).
Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. I1 – Diameter Ratios of 1.06 and 1.40. Research memorandum NACA RM E52F26, 1952. 37 p. Available at: https://ntrs.nasa.gov/api/citations/20040040338/downloads/20040040338.pdf (accessed 25.01.2025).
Simon, P. C. Internal Performance of a Series of Circular Auxiliary-Air Inlets Immersed in a Turbulent Boundary Layer Mach Number Range: 1.5 to 2.0. Research memorandum NACA RM E54L03, 1955. 34 p. Available at: https://ntrs.nasa.gov/api/citations/19930088569/downloads/19930088569.pdf (accessed 25.01.2025).
Hearth, D. P., & Cubbison, R. W. Investigation at Supersonic and Subsonic Mach Numbers of Auxiliary Inlets Supplying Secondary Air Flow to Ejector Exhaust Nozzles. Research memorandum NACA RM E55J12a, 1956. 47 p. Available at: https://ntrs.nasa.gov/api/citations/19930088935/downloads/19930088935.pdf (accessed 25.01.2025).
Henry, J. R, Wood, C. C., & Wilbur, S. W. Summary of Subsonic-diffuser Data: Research memorandum NASA RM L56F05, 1956. 133 p. Available at: https://ntrs.nasa.gov/api/citations/19630003986/downloads/19630003986.pdf (accessed 25.01.2025).
Huff, R. G., & Anderson, A. A. Internal Performance of Several Auxiliary Air Inlets Immersed in a Turbulent Boundary Layer at Mach Numbers of 1.3, 1.5, and 2.0. Research memorandum NACA RM E56J18, 1957. 25 p. Available at: https://ntrs.nasa.gov/api/citations/19930089524/downloads/19930089524.pdf (accessed 25.01.2025).
Silhan, F. V., & Cubbage, J. M. Drag of Conical and Circular Arc Boattail Afterbodies at Mach Numbers from 0.6 to 1.3. NACA RM-L56K22, 1957. 38 p. Available at: https://digital.library.unt.edu/ark:/67531/metadc63294/m2/1/high_res_d/19930089650.pdf (accessed 28.02.25).
Cubbage, J. M. Jet Effects on the Drag of Conical Afterbodies for Mach Numbers of 0.6 to 1.28: NACA RM-L57B21, 1957. 64 p. Available at: https://ntrs.nasa.gov/api/citations/19930089627/downloads/19930089627.pdf (accessed 28.02.25).
Shrewsbury, G. D. Effect of Boattail Juncture Shape on Pressure Drag Coefficients of Isolated Afterbodies. NASA TM X-1517, 1968. 35 p. Available at: https://ntrs.nasa.gov/api/citations/19680009768/downloads/19680009768.pdf (accessed 30.01.2025).
Harrington, D. E. Jet Effects on Boanail Pressure Drag of Isolated Ejector Nozzles at Mach Numbers From 0.60 to 1.47. NASA TM X-1785, 1969. 91 p. Available at: https://ntrs.nasa.gov/api/citations/19690017598/downloads/19690017598.pdf (accessed 28.02.25).
Blaha, B. J., Bresnahan, D. L. Wind Tunnel Installation Effects on Isolated Afterbodies at Mach numbers from 0.56 to 1.5. NASA TM X-52581, 1969. 51 p. Available at: https://ntrs.nasa.gov/api/citations/19690011518/downloads/19690011518.pdf (accessed 28.02.25).
Bergman, D. Effects of Engine Exhaust Flow on Boattail Drag. AIAA Paper 70-132. Jan, 1970, vol. 8, no. 6, pp. 434439. doi: 10.2514/3.59120.
Carson, G. T., & Lee, E. E. Experimental and Analytical Investigation of Axisymmetric Supersonic Cruise Nozzle Geometry at Mach Numbers from 0.60 to 1.30. NASA Technical Paper, 1981. 90 p. Available at: https://ntrs.nasa.gov/api/citations/19820006179/downloads/19820006179.pdf (accessed 08.01.2025).
Zhang, S., Lin, Z., Gao, Z., Miao, S., Li, J., Zeng, L., & Pan, D. Wind Tunnel Experimental and Numerical Simulation of Secondary Flow Systems on Supersonic Wing. Aerospace, 2024, vol. 11, iss. 618, article no. 121. doi: 10.3390/aerospace11080618.
Zhu, J., Zhang, Y., Li, Y., Zeng, L., Miao, L., Xiong, N., & Tao, Y. Influence of Double-Ducted Serpentine Nozzle Configurations on the Interaction Characteristics between the External and Nozzle Flow of Aircraft. Aerospace, 2024, vol. 11, iss. 606. article no. 124. doi: 10.3390/aerospace11080606.
Liu, J., Wang, L., & Jia, L. A predictive model for the performance of the ejector in refrigeration system. Energy Conversion and Management. 2017. vol. 150. article no. 269276. doi: 10.1016/j.enconman.2017.08.021.
Keenan, J. H., & Neumann, E. P. A simple air ejector. ASME Journal of Applied Mechanics, 1942, vol. 9(2), pp. 75–81. doi: 10.1115/1.4009187.
Keenan, J. H., Neumann, E. P., & Lustwerk, F. An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, 1950, vol. 17, no. 3, pp. 299–309. doi: 10.1115/1.4010131.
Mikkelsen, C. D., Sandberg, M. R., & Addy, A. L. Theoretical and Experimental Analysis of the Constant-Area, Supersonic-Supersonic Ejector. University of Illinois Report UILUENG764003. 1976. 296 p. Available at: https://apps.dtic.mil/sti/pdfs/ADA033615.pdf (accessed 25.01.2025).
Munday, J. T., & Bagster, D. F. A new ejector theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development, 1977, vol. 16, article no. 442449. doi: 10.1021/i260064a003.
Huang, B. J., Jiang, C. B., & Hu, F. L. Ejector performance characteristics and design analysis of jet refrigeration system. Journal of Engineering Gas Turbines Power, 1985, vol. 107, iss 3, article no. 792802. doi: 10.1115/1.3239802.
Huang, B. J., & Chang, J. M. Empirical correlation for ejector design. International Journal of Refrigeration, 1999, vol. 22, article no. 379388. doi: 10.1016/S0140-7007(99)00002-X.
Huang, B. J., Chang, J. M. Wang, C. P., & Petrenko, V. A. A 1-D analysis of ejector performance. International Journal of Refrigeration, 1999, vol. 22, pp. 354–364. doi: 10.1016/S0140-7007(99)00004-3.
Riffat, S. B., Jiang, L., & Gan, G. Recent development in ejector technology — a review. International Journal of Ambient Energy, 2005, no. 26, pp. 13–26. doi: 10.1080/01430750.2005.9674967.
Zhu, Y., Cai, W., Wen, C., & Li, Y. Shock circle model for ejector performance evaluation. Energy Conversation Management, 2007, vol. 48(9), pp. 2533–2541. doi: 10.1016/J.ENCONMAN.2007.03.024.
Tashtoush, B., Alshare, A., & Al-Rifai, S. Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Conversation and Management, 2015, vol. 94, article no. 300310. doi: 10.1016/j.enconman.2015.01.039.
Karthick, S. K., Rao, S. M. V., Jagadeesh, G., & Reddy, K. P. J. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector. Physics of Fluids, 2016, no. 28, article no. 126. doi: 10.1063/1.4954669.
Elbel, S., & Lawrence, N. Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016, vol. 62, pp. 1–18. doi: 10.1016/j.ijrefrig.2015.10.031.
Li, F., Tian, Q., Wu, C., Wang, X., & Lee, J.-M. Ejector performance prediction at critical and subcritical operational modes. Applied Thermal Engineering, 2017, vol. 115, article no. 444454. doi: 10.1016/j.applthermaleng.2016.12.116.
Kumar, V., & Sachdeva, G. 1-D model for finding geometry of a single phase ejector. Energy, 2018, vol. 165, article no. 7592. doi: 10.1016/j.energy.2018.09.071.
Xu, D., Gu, Y., Li, W., & Chen, J. Experimental Investigation of the Performance of a Novel Ejector–Diffuser System with Different Supersonic Nozzle Arrays. Fluids, 2024, vol. 9, iss. 155, article no. 117. doi: 10.3390/fluids9070155.
Chen, H., Ge, J., & Xu, Z. A Study on the Evolution Laws of Entrainment Performances Using Different Mixer Structures of Ejectors. Entropy, 2024, vol. 26, iss. 891, article no. 124. doi: 10.3390/e26110891.
Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. Numerical and experimental investigations on supersonic ejectors. International Journal of Heat Fluid Flow, 2005, vol. 26, pp. 56–70.
Yu, Y., Shademan, M., Barron R. M., & Balachandar, R. CFD Study of Effects of Geometry Variations on Flow in a Nozzle. Engineering Applications of Computational Fluid Mechanics, 2012, vol. 6, no. 3, article no. 412425. doi: 10.1080/19942060.2012.11015432.
Chen, W., Chong, D. Yan, J., & Liu, J. The numerical analysis of the effect of geometrical factors on natural gas ejector performance. Applied Thermal Engineering, 2013, vol. 59, article no. 2129. doi: 10.1016/j.applthermaleng.2013.04.036.
Wang, L., Yan, J., Wang, C., & Li, X. Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration, 2017, vol. 76, pp. 219–229. doi: 10.1016/j.ijrefrig.2017.02.010.
Zhang, K., Zhu, X., Ren, X., Qiu, Q., & Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Applied Thermal Engineering. 2017, vol. 126, pp. 1–20. doi: 10.1016/j.applthermaleng.2017.07.085.
Tashtoush, B. M., Al-Nimr, M. A., & Khasawneh, M. A. A comprehensive review of ejector design, performance, and applications. Applied Energy. 2019, vol. 240, pp. 138–172. doi: 10.1016/j.apenergy.2019.01.185.
Pradeep, G., Srisha, MV. R., & Pramod, K. Numerical Analysis of Ejector Performance Near the Critical Back Pressure. Proceeding of the 6th National Symposium on Shock Waves — IITM (NSSW2020), 2020, pp. 16. Available at: https://www.researchgate.net/publication/344507428_Numerical_Analysis_of_Ejector_Performance_Near_the_Critical_Back_Pressure#fullTextFileContent (accessed 25.01.2025).
Ye, W., Zhang, J., Xu, W., & Zhang, Z. Numerical investigation on the flow structures of the multistrut mixing enhancement ejector. Applied Thermal Engineering. 2020, vol. 179, article no. 120. doi: 10.1016/j.applthermaleng.2020.115653.
Galindo, J., Serrano, J. R., Dolz, V., & Iljaszewicz, P. Impact of Mesh Resolution and Temperature Effects in Jet Ejector CFD Calculations. Applied Science, 2025, vol. 15, iss. 3880. article no. 119. doi: 10.3390/app15073880.
DOI: https://doi.org/10.32620/aktt.2025.4sup1.12