Review of ejector nozzles. Part 2 – Mixers and additional information

Ruslan Tsukanov, Sergiy Yepifanov

Abstract


The subject of this article is ejector nozzles, which are intended for the thrust augmentation of jet engines and their corresponding flow mixers. The goal is to soften the acuteness of contradictions between the required high performance (especially thrust augmentation) and compactness and between the conflicting objectives of achieving a high mixing rate with low total primary flow pressure losses within a short overall length. The tasks to be solved are as follows: revealing ways for thrust augmentation and external drag minimization of ejector nozzles through analysis of turbofan forced lobe mixer investigations, experimental studies of the shape and location of additional air intakes, experimental studies of shapes of afterbodies, and ejector investigations from other fields of engineering. The following methods were used: search of corresponding information sources on the Internet and analysis based on operational experience in the aviation branch. The following results were obtained: in terms of found information sources, the most effective devices for mixing up the primary and the secondary flows within short mixing ducts are forced lobe mixers; their advantages and disadvantages are formulated; and three mechanisms responsible for the mixing process behind the lobe mixers were revealed. A large number of experimental investigations of the characteristics of both the additional air intakes and afterbodies of the fuselages and nacelles were considered. The development of both experimental and theoretical ejector investigations in other engineering branches was analyzed. Conclusions. The scientific novelty of the results obtained is as follows: 1) information from numerous sources of literature that characterizes lobe mixers as devices for improving the ejector nozzle efficiency, and development of these mixer study by both theoretical and experimental methods were collected in the review article; 2) recommendations as for selection the shape and location of additional air intakes and afterbodies were revealed; 3) very limited applicability of the ejector models, developed in other fields of engineering, for turbojet engine thrust augmentation was stated. Thus, the development of a design methodology for thrust-augmenting ejector nozzles for micro-turbojets has been revealed. The goal and challenges of the following research are outlined.

Keywords


gas-turbine engine; thrust augmenting ejector nozzle; thrust augmentation; entrainment ratio; primary nozzle; ejector mixing chamber

Full Text:

PDF

References


Tsukanov, R., & Yepifanov, S. Review of Ejector Nozzles. Part 1 – Thrust Augmenting Ejector Nozzles. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2025, no. 4(204), pp. 45-59. doi: 10.32620/aktt.2025.4.07.

Povinelli, L. A., Anderson, B. H., & Gerstenmaier, W. Computation of Three-Dimensional Flow in Turbofan Mixers and Comparison with Experimental Data: NASA Technical Note TM81410, 1980. 13 p. Available at: https://ntrs.nasa.gov/api/citations/19800007105/downloads/19800007105.pdf (accessed 28.02.2025).

Paterson, R. W. Turbofan Forced Mixer-Nozzle Internal Flow Field. vol. 1 — A Benchmark Experimental Study: NASA Contractor Report 3492, 1982. 134 p. Available at: https://ntrs.nasa.gov/api/citations/19820014584/downloads/19820014584.pdf (accessed 28.02.2025).

Kozlowski, H., & Kraft, G. Experimental Evaluation of Exhaust Mixer for an Energy Efficient Engine. Proceeding of 16th AIAA/SAE/ASME Joint Propulsion Conference, Hartford, 30 June2 July, 1980, pp. 1–6. doi: 10.2514/6.1980-1088.

Paterson, R. W. Turbofan Mixer Nozzle Flow Field - A Benchmark Experimental Study. Journal of Engineering for Gas Turbines and Power, 1984, vol. 106, no. 3, pp. 692-698. doi: 10.1115/1.3239625.

Skebe, S., Paterson, R., & Barber, T. Experimen¬tal investigation of three-dimensional forced mixer lobe flow fields. Proceedings of the 1st National Fluid Dynamics Conference (AIAA), Cincinnati, OH, USA, 25–28 July 1988, article no. 19992006. doi: 10.2514/6.1988-3785.

Paynter, G. C., Birch, S. C., Spalding, D. B., & Tatchell, D. G. An Experimental and Numerical Study of the 3-D Mixing Flows of a Turbofan Engine Exhaust System. Proceeding of 15th AIAA Aerospace Science Meeting, Los Angeles, 24-26 January, 1977, pp. 112. doi: 10.2514/6.1977-204.

Roberts, D. W. Numerical Prediction of 3-D Ejector Flows. Proceeding of NASA Conference Publication 2093. Workshop on Thrust Augmentation Ejectors. Dayton, 28-29 June, 1978, article no. 5570. Available at: https://ntrs.nasa.gov/api/citations/19800001868/downloads/19800001868.pdf (accessed 25.01.2025).

Anderson, B. H., Polinelli, L. A., & Gertenmaier, W. Influence of Pressure Driven Secondary Flows on the Behavior of Turbofan Forced Mixers: NASA Technical Note TM81410, 1980. 28 p. Available at: https://ntrs.nasa.gov/api/citations/19800019131/downloads/19800019131.pdf (accessed 28.02.2025).

Tillman, T. G., Paterson, R. W., & Presz, W. M. Supersonic Nozzle Mixer Ejector. AIAA Journal of Propulsion and Power, vol. 8, no. 2, 1992, pp. 513-519. doi: 10.2514/3.23506.

Presz, W. M. Mixer/Ejector Noise Suppressors. Proceeding of 27th Joint Propulsion Conference, Sacramento, 24-26 June, 1991, article no. 110. doi: 10.2514/6.1991-2243.

Anderson, B. H., & Polinelli, L. A. Factors Which Influence the Behavior of Turbofan Forced Mixer Nozzles. Technical Memorandum NASA TM 81668, 1981. 29 p. Available at: https://ntrs.nasa.gov/api/citations/19810006725/downloads/19810006725.pdf (accessed 28.02.2025).

Werle, M. J., & Vasta, V. N. Turbofan Forced Mixer-Nozzle Internal Flow Field. vol. 2 — Computational Fluid Dynamic Predictions: NASA Contractor Report 3493, 1982. 94 p. Available at: https://ntrs.nasa.gov/api/citations/19820014585/downloads/19820014585.pdf (accessed 28.02.2025).

Kreskovsky, J. P., & Briley, W. R., McDonald, H. Investigation of Mixing in a Turbofan Exhaust Duct, Part I: Analysus and Computational Procedure. AIAA Journal, vol. 22, iss. 3, 1984, pp. 374-382. doi: 10.2514/3.48457.

Povinelli, L. A., & Anderson, B. H. Investiga¬tion of Mixing in a Turbofan Exhaust Duct, Part II: Computer Code Application and Verification. AIAA Journal, vol. 22, iss. 4, 1984, pp. 518-525. doi: 10.2514/3.8433.

Merati, P. Numerical Simulation of the Vortical Structures in a Lobed Jet Mixing Flow. Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA. January 10–13, 2005, article no. 113. doi: AIAA-2005-0635.

Henry, J. R. Design of Power-Plant Installations, Pressure-Loss Characteristics of Duct Components: ARR No. L4F26, 1944. 63 p. Available at: https://apps.dtic.mil/sti/tr/pdf/ADB804977.pdf (accessed 25.01.2025).

Salmi, R. J. Experimental Investigation of Drag of Afterbodies with Exiting Jet at High Subsonic Mach Numbers. Research memorandum NACA RM E54I13, 1954. 30 p. Available at: https://ntrs.nasa.gov/api/citations/19930088483/downloads/19930088483.pdf (accessed 25.01.2025).

Hearth, D. P., Englert, G. W., & Kowalski, K. L. Matching of Auxiliary Inlets to Secondary-Air Requirements of Aircraft Ejector Exhaust Nozzles. Research memorandum NACA RM E55D21, 1955. 41 p. Available at: https://ntrs.nasa.gov/api/citations/19930088670/downloads/19930088670.pdf (accessed 25.01.2025).

Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. 1 – Diameter Ratios of 1.21 and 1.10. Research memorandum NACA RM E52E21, 1952. 26 p. Available at: https://ntrs.nasa.gov/api/citations/19930087173/downloads/19930087173.pdf (accessed 25.01.2025).

Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. I1 – Diameter Ratios of 1.06 and 1.40. Research memorandum NACA RM E52F26, 1952. 37 p. Available at: https://ntrs.nasa.gov/api/citations/20040040338/downloads/20040040338.pdf (accessed 25.01.2025).

Simon, P. C. Internal Performance of a Series of Circular Auxiliary-Air Inlets Immersed in a Turbulent Boundary Layer Mach Number Range: 1.5 to 2.0. Research memorandum NACA RM E54L03, 1955. 34 p. Available at: https://ntrs.nasa.gov/api/citations/19930088569/downloads/19930088569.pdf (accessed 25.01.2025).

Hearth, D. P., & Cubbison, R. W. Investigation at Supersonic and Subsonic Mach Numbers of Auxiliary Inlets Supplying Secondary Air Flow to Ejector Exhaust Nozzles. Research memorandum NACA RM E55J12a, 1956. 47 p. Available at: https://ntrs.nasa.gov/api/citations/19930088935/downloads/19930088935.pdf (accessed 25.01.2025).

Henry, J. R, Wood, C. C., & Wilbur, S. W. Summary of Subsonic-diffuser Data: Research memorandum NASA RM L56F05, 1956. 133 p. Available at: https://ntrs.nasa.gov/api/citations/19630003986/downloads/19630003986.pdf (accessed 25.01.2025).

Huff, R. G., & Anderson, A. A. Internal Performance of Several Auxiliary Air Inlets Immersed in a Turbulent Boundary Layer at Mach Numbers of 1.3, 1.5, and 2.0. Research memorandum NACA RM E56J18, 1957. 25 p. Available at: https://ntrs.nasa.gov/api/citations/19930089524/downloads/19930089524.pdf (accessed 25.01.2025).

Silhan, F. V., & Cubbage, J. M. Drag of Conical and Circular Arc Boattail Afterbodies at Mach Numbers from 0.6 to 1.3. NACA RM-L56K22, 1957. 38 p. Available at: https://digital.library.unt.edu/ark:/67531/metadc63294/m2/1/high_res_d/19930089650.pdf (accessed 28.02.25).

Cubbage, J. M. Jet Effects on the Drag of Conical Afterbodies for Mach Numbers of 0.6 to 1.28: NACA RM-L57B21, 1957. 64 p. Available at: https://ntrs.nasa.gov/api/citations/19930089627/downloads/19930089627.pdf (accessed 28.02.25).

Shrewsbury, G. D. Effect of Boattail Juncture Shape on Pressure Drag Coefficients of Isolated Afterbodies. NASA TM X-1517, 1968. 35 p. Available at: https://ntrs.nasa.gov/api/citations/19680009768/downloads/19680009768.pdf (accessed 30.01.2025).

Harrington, D. E. Jet Effects on Boanail Pressure Drag of Isolated Ejector Nozzles at Mach Numbers From 0.60 to 1.47. NASA TM X-1785, 1969. 91 p. Available at: https://ntrs.nasa.gov/api/citations/19690017598/downloads/19690017598.pdf (accessed 28.02.25).

Blaha, B. J., Bresnahan, D. L. Wind Tunnel Installation Effects on Isolated Afterbodies at Mach numbers from 0.56 to 1.5. NASA TM X-52581, 1969. 51 p. Available at: https://ntrs.nasa.gov/api/citations/19690011518/downloads/19690011518.pdf (accessed 28.02.25).

Bergman, D. Effects of Engine Exhaust Flow on Boattail Drag. AIAA Paper 70-132. Jan, 1970, vol. 8, no. 6, pp. 434439. doi: 10.2514/3.59120.

Carson, G. T., & Lee, E. E. Experimental and Analytical Investigation of Axisymmetric Supersonic Cruise Nozzle Geometry at Mach Numbers from 0.60 to 1.30. NASA Technical Paper, 1981. 90 p. Available at: https://ntrs.nasa.gov/api/citations/19820006179/downloads/19820006179.pdf (accessed 08.01.2025).

Zhang, S., Lin, Z., Gao, Z., Miao, S., Li, J., Zeng, L., & Pan, D. Wind Tunnel Experimental and Numerical Simulation of Secondary Flow Systems on Supersonic Wing. Aerospace, 2024, vol. 11, iss. 618, article no. 121. doi: 10.3390/aerospace11080618.

Zhu, J., Zhang, Y., Li, Y., Zeng, L., Miao, L., Xiong, N., & Tao, Y. Influence of Double-Ducted Serpentine Nozzle Configurations on the Interaction Characteristics between the External and Nozzle Flow of Aircraft. Aerospace, 2024, vol. 11, iss. 606. article no. 124. doi: 10.3390/aerospace11080606.

Liu, J., Wang, L., & Jia, L. A predictive model for the performance of the ejector in refrigeration system. Energy Conversion and Management. 2017. vol. 150. article no. 269276. doi: 10.1016/j.enconman.2017.08.021.

Keenan, J. H., & Neumann, E. P. A simple air ejector. ASME Journal of Applied Mechanics, 1942, vol. 9(2), pp. 75–81. doi: 10.1115/1.4009187.

Keenan, J. H., Neumann, E. P., & Lustwerk, F. An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, 1950, vol. 17, no. 3, pp. 299–309. doi: 10.1115/1.4010131.

Mikkelsen, C. D., Sandberg, M. R., & Addy, A. L. Theoretical and Experimental Analysis of the Constant-Area, Supersonic-Supersonic Ejector. University of Illinois Report UILUENG764003. 1976. 296 p. Available at: https://apps.dtic.mil/sti/pdfs/ADA033615.pdf (accessed 25.01.2025).

Munday, J. T., & Bagster, D. F. A new ejector theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development, 1977, vol. 16, article no. 442449. doi: 10.1021/i260064a003.

Huang, B. J., Jiang, C. B., & Hu, F. L. Ejector performance characteristics and design analysis of jet refrigeration system. Journal of Engineering Gas Turbines Power, 1985, vol. 107, iss 3, article no. 792802. doi: 10.1115/1.3239802.

Huang, B. J., & Chang, J. M. Empirical correlation for ejector design. International Journal of Refrigeration, 1999, vol. 22, article no. 379388. doi: 10.1016/S0140-7007(99)00002-X.

Huang, B. J., Chang, J. M. Wang, C. P., & Petrenko, V. A. A 1-D analysis of ejector performance. International Journal of Refrigeration, 1999, vol. 22, pp. 354–364. doi: 10.1016/S0140-7007(99)00004-3.

Riffat, S. B., Jiang, L., & Gan, G. Recent development in ejector technology — a review. International Journal of Ambient Energy, 2005, no. 26, pp. 13–26. doi: 10.1080/01430750.2005.9674967.

Zhu, Y., Cai, W., Wen, C., & Li, Y. Shock circle model for ejector performance evaluation. Energy Conversation Management, 2007, vol. 48(9), pp. 2533–2541. doi: 10.1016/J.ENCONMAN.2007.03.024.

Tashtoush, B., Alshare, A., & Al-Rifai, S. Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Conversation and Management, 2015, vol. 94, article no. 300310. doi: 10.1016/j.enconman.2015.01.039.

Karthick, S. K., Rao, S. M. V., Jagadeesh, G., & Reddy, K. P. J. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector. Physics of Fluids, 2016, no. 28, article no. 126. doi: 10.1063/1.4954669.

Elbel, S., & Lawrence, N. Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016, vol. 62, pp. 1–18. doi: 10.1016/j.ijrefrig.2015.10.031.

Li, F., Tian, Q., Wu, C., Wang, X., & Lee, J.-M. Ejector performance prediction at critical and subcritical operational modes. Applied Thermal Engineering, 2017, vol. 115, article no. 444454. doi: 10.1016/j.applthermaleng.2016.12.116.

Kumar, V., & Sachdeva, G. 1-D model for finding geometry of a single phase ejector. Energy, 2018, vol. 165, article no. 7592. doi: 10.1016/j.energy.2018.09.071.

Xu, D., Gu, Y., Li, W., & Chen, J. Experimental Investigation of the Performance of a Novel Ejector–Diffuser System with Different Supersonic Nozzle Arrays. Fluids, 2024, vol. 9, iss. 155, article no. 117. doi: 10.3390/fluids9070155.

Chen, H., Ge, J., & Xu, Z. A Study on the Evolution Laws of Entrainment Performances Using Different Mixer Structures of Ejectors. Entropy, 2024, vol. 26, iss. 891, article no. 124. doi: 10.3390/e26110891.

Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. Numerical and experimental investigations on supersonic ejectors. International Journal of Heat Fluid Flow, 2005, vol. 26, pp. 56–70.

Yu, Y., Shademan, M., Barron R. M., & Balachandar, R. CFD Study of Effects of Geometry Variations on Flow in a Nozzle. Engineering Applications of Computational Fluid Mechanics, 2012, vol. 6, no. 3, article no. 412425. doi: 10.1080/19942060.2012.11015432.

Chen, W., Chong, D. Yan, J., & Liu, J. The numerical analysis of the effect of geometrical factors on natural gas ejector performance. Applied Thermal Engineering, 2013, vol. 59, article no. 2129. doi: 10.1016/j.applthermaleng.2013.04.036.

Wang, L., Yan, J., Wang, C., & Li, X. Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration, 2017, vol. 76, pp. 219–229. doi: 10.1016/j.ijrefrig.2017.02.010.

Zhang, K., Zhu, X., Ren, X., Qiu, Q., & Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Applied Thermal Engineering. 2017, vol. 126, pp. 1–20. doi: 10.1016/j.applthermaleng.2017.07.085.

Tashtoush, B. M., Al-Nimr, M. A., & Khasawneh, M. A. A comprehensive review of ejector design, performance, and applications. Applied Energy. 2019, vol. 240, pp. 138–172. doi: 10.1016/j.apenergy.2019.01.185.

Pradeep, G., Srisha, MV. R., & Pramod, K. Numerical Analysis of Ejector Performance Near the Critical Back Pressure. Proceeding of the 6th National Symposium on Shock Waves — IITM (NSSW2020), 2020, pp. 16. Available at: https://www.researchgate.net/publication/344507428_Numerical_Analysis_of_Ejector_Performance_Near_the_Critical_Back_Pressure#fullTextFileContent (accessed 25.01.2025).

Ye, W., Zhang, J., Xu, W., & Zhang, Z. Numerical investigation on the flow structures of the multistrut mixing enhancement ejector. Applied Thermal Engineering. 2020, vol. 179, article no. 120. doi: 10.1016/j.applthermaleng.2020.115653.

Galindo, J., Serrano, J. R., Dolz, V., & Iljaszewicz, P. Impact of Mesh Resolution and Temperature Effects in Jet Ejector CFD Calculations. Applied Science, 2025, vol. 15, iss. 3880. article no. 119. doi: 10.3390/app15073880.




DOI: https://doi.org/10.32620/aktt.2025.4sup1.12