CFD modeling of the development of thermoconvection currents on the processes of starting low-temperature thermoacoustic engines
Abstract
Keywords
Full Text:
PDF (Українська)References
Benveniste, H., Oppenheimer, M., Fleurbaey, M. Climate change increases resource-constrained international immobility. Nature Climate Change, 2022, vol. 12, pp. 634–641. doi: 10.1038/s41558-022-01401-w.
Gambhir, A., George, M., McJeon, H., Arnell, N. W., Bernie, D., Mittal, S., Köberle, A. C., Lowe, J., Rogelj, J., & Monteith, S. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nature Climate Change, 2022, vol. 12, pp. 88–96. doi: 10.1038/s41558-021-01236-x.
Thekdi, A., Nimbalkar, S. U., Sundaramoorthy, S., Armstrong, K. O., Taylor, A., Gritton, J. E., Wenning, T., & Cresko, J. Technology Assessment on Low-Temperature Waste Heat Recovery in Industry. United States: N.p., 2021. 103 p. doi: 10.2172/1819547.
Korobko, V., Shevtsov, A., Serbin, S., Wen, H., & Dzida, M. Impact of the type of heat exchanger on the characteristics of low-temperature thermoacoustic heat engines. International Journal of Thermofluids, 2024, vol. 24, article no. 100953. doi: 10.1016/j.ijft.2024.100953.
Korobko, V., Serbin, S., & Le, H. C. Exploration of a model thermoacoustic turbogenerator with a bidirectional turbine. Polish Maritime Research, 2023, vol. 30, iss. 4, pp. 102–109. doi: 10.2478/pomr-2023-0063.
Rott, N., & Zouzoulas, G. Thermally driven acoustic oscillations. Part IV: tubes with variable cross section. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1976, vol. 27, pp. 197–224.
Atchley, A. A. Standing wave analysis of a thermoacoustic prime mover below onset of self‐oscillation. Journal of the Acoustical Society of America, 1992, vol. 92, iss. 5, pp. 2907–2914. doi: 10.1121/1.404355.
Atchley, A. A. Analysis of the initial buildup of oscillations in a thermoacoustic prime mover. Journal of the Acoustical Society of America, 1994, vol. 95, iss. 3, pp. 1661–1664. doi: 10.1121/1.408554.
Swift, G. W. Thermoacoustics: A unifying perspective for some engines and refrigerators. American Institute of Physics, 2002. 300 p.
Jaworski, A. J. Editorial for Special Issue: “Heat Transfer Processes in Oscillatory Flow Conditions”. Applied Sciences, 2017, vol. 7, iss. 10. 3 p. doi: 10.3390/app7100994.
Yu, Z., & Jaworski, A. J. Impact of viscous and heat relaxation loss on the critical temperature gradients of thermoacoustic stacks. International Journal of Engineering and Applied Sciences, 2009, vol. 5, iss. 3, pp. 152–158.
Korobko, V., & Moskovko, O. Osoblyvosti protsesu zapusku termoakustychnykh dvyguniv za umov vykorystannia nyzkotemperaturnykh dzherel teplovoi energii [Features start thermoacoustic engine under conditions using low-temperature thermal energy source]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2014, no. 8 (115), pp. 50–54.
Abduljalil, A. S., Yu, Z., & Jaworski, A. J. Experimental testing of the flow resistance and thermal conductivity of porous materials for regenerators. Proceedings of the 23rd IIR International Congress of Refrigeration, 2011, vol. 32, pp. 217–228.
DOI: https://doi.org/10.32620/aktt.2025.4sup1.03