Creation of a built-in torque measurement on the fan shaft of a turbofan engine

Kostiantyn Podgors’ky, Sergiy Yepifanov

Abstract


One of the main problems in the development of turbofan engines with high and ultra-high bypass ratios is the design and testing of fans. Increasing the efficiency of fans of engines of the specified class requires solving many complex interrelated problems in the fields of gas dynamics, materials science, strength, vibration analysis, and technology. One of these tasks is to determine the fan characteristics based on the results of its tests. The subject of this study is the development of a built-in fan shaft torque meter, which consists of hardware and software-algorithmic parts. The goal was to determine the torque in all engine operating modes typical of the fan characteristic tests. Tasks considered in the work: substantiation of the need to create a built-in torque meter to provide bench tests to determine the characteristics of the fan; construction of the design of the hardware part of the torque meter with minimal modifications of engine parts; description of the thermal model of the shaft in the basic mode of engine operation; development of a methodology for determining the parameters of the boundary conditions of shaft heat exchange in off-design engine operating modes; formation of the methodological part of the torque meter integrated into the structure of the engine. For this purpose, the methods of mathematical finite element modeling of the temperature and deformed states of structural elements, as well as the theory of heat exchange, are used. Scientific and practical novelty: a constructive modification of the fan shaft is proposed, which ensures the installation of a toothed inductor and the implementation of a large measurement base, which increases accuracy; a mathematical finite element model of the shaft is formed, which ensures the connection between the torque and the twist angle; it is proposed to use the methods of the theory of similarity to determine the relationship between the parameters determining the conditions of heating and cooling of the shaft, with the measured parameters of the working substance in the gas flow duct of the engine; the structure of the methodological part of the torque meter built into the structure of the engine rotor is formed.

Keywords


turbofan engine; fan; torque; shaft rigidity; temperature distribution; heat exchange boundary conditions

References


Soares, C. Gas turbines: A handbook of air, land and sea applications. Chapter 10. Performance testing new gas turbine engines: parameters and calculations. 2nd edition. Elsevier Inc., 2015, pp. 533-636.

Federal Acquisition regulations. Part 33. Subpart F – Block tests. Aircraft engines. Available at: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-33/subpart-F. (accessed 1.05.2024).

Brouckaert, J-F., Mirville, F., Phuah, K., & Taferner P. Clean Sky research and demonstration programmes for next generation aircraft engines. Aeronautical Journal, 2018, vol. 122, iss. 1254, pp. 1163-1175. DOI: 10.1017/aer.2018.37.

Whurr, J., & Beecroft, P. Rolls-Royce’s Long Term Civil Aircraft Propulsion System Concept and Technology Strategy. International Symposium on Air Breathing Engines. ISABE-2017-22531, 2017. 19 p.

Skibin, V. A., & Solonin, V. I. Raboty vedushhih aviadvigatelestroitel'nyh kompanij po sozdaniju perspektivnyh aviacionnyh dvigatelej (analiticheskij obzor) [Works of the leading engine designinf companies on creating perspectives of aircraft engines (analytical survey)]. Moscow, CIAM Publ., 2004. 424 p.

Yepifanov, S. V., & Podgors`ky`j, K. M. Analiz tochnosti ekspery`mental`nogo vy`znachennya KKD venty`lyatora z vy`kory`stannyam vy`miryuvachiv kruty`l`nogo momentu [Accuracy analysis of the fan efficiency experimental determination using torque meter]. Aviacijno-kosmichna texnika i texnologiya - Aerospace Technic and Technology, 2023, no. 1(185), pp. 35-46. DOI: 10.32620/aktt.2023.1.04.

Bodin, R. M. Speed or torque probe for gas turbine engines. Patent US, № US8549931, 2013.

Sirenko, S., Yepifanov, S., Podgorsky, K., & Nechunaev, S. New Approach to Torque Measurement Unit Development and its Calibration. Journal of Konbin, 2018, vol. 46, iss. 1, pp. 75–86. DOI: 10.2478/jok-2018-0024.

Oliynyk, O. V. Kontseptsiya i metody monitorynhu vyrobitku resursu aviatsiynykh HTD na osnovi identyfikatsiyi dynamiky temperaturnoho y napruzhenoho stanu osnovnykh detaley. Diss. Dokt. tekhn. nauk [Concept and methods of turbine engine life-time monitoring based on identification of the main parts thermal and stress state dynamics. Dr. eng. sci. diss]. Kharkiv, 2006. 245 p.

Maravillya, E. K. Pidvyshchennya tochnosti vyznachennya hranychnykh umov teploobminu dlya monitorynhu resursu robochykh lopatok turbin aviatsiynykh dvyhuniv. PhD Diss [Precision improvement of a heat exchange boundary conditions determining for aircraft engines turbine blades life-time monitoring. PhD diss]. Kharkiv, 2016. 138 p.

Shymanovs'ka, N. A. Formuvannya modeley temperaturnoho i napruzhenoho stanu detaley dlya system monitorynhu vyrobitku resursiv dvyhuniv bahatorezhymnykh litakiv. PhD Diss [Models of parts thermal and stress state forming for life-time monitoring systems of engines for multi-mode airplanes. PhD diss]. Kharkiv, 2008. 144 p.

Zelens'kyy, R. L. Pidvyshchennya tochnosti vyznachennya dynamichnykh kharakterystyk hazoturbinnykh dvyhuniv z urakhuvannyam prohrivu konstruktsiynykh elementiv. PhD Diss [Precision improvement of gas turbine engines dynamic performances determining taking into account design elements heating. PhD diss]. Kharkiv, 2015. 159 p.

Sedov, L. Y. Metody podobyya y razmernosty v mekhanyke [Methods of similarity and dimension in mechanics]. Moskow, Nauka Publ., 1967. 428 p.

Tereshchenko, Yu. M., Kulyk, M. S., Mitrakhovych, M. M. Teoriya teplovykh dvyhuniv. Hazodynamichnyy rozrakhunok elementiv hazotur¬binnykh dvyhuniv: navch. posibnyk [Heat engines theory. Gas-dynamic analysis of turbine engine elements: tutorial]. Kyiv, NAU Publ., 2015. 292 p.

Yepifanov, S. V., Kuznetsov, B. I., Bohayenko, I. M., Hrabovs'kyy, H. H., Dyukov, V. A., Kuz'menko, S. O., Ryumshyn, N. O., & Samets'kyy, O. O. Syntez system keruvannya ta diahnostuvannya hazoturbinnykh dvyhuniv [Synthesis of gas turbine engines control and diagnostic systems]. Kyiv, Tekhnika Publ., 1998. 312 p.

Visser, W. P. J., & Broomhead, M. J. GSP. A generic object-oriented gas turbine simulation environment. ASME Paper 2000-GT-2, 2000. 20 p.

Kurzke, J. Advanced user-friendly gas turbine performance calculation on a personal computer. ASME Paper 95-GT-147, 1995. 8 p.

Mathioudakis, K., Stamatis, A., Tsalavoutas, A., & Aretakis, N. Instructing the principles of gas turbine performance monitoring and diagnostics by means of interactive computer models. 45th ASME International Gas Turbine & Aeroengine Technical Congress, Munich, Germany, 8-11 May, 2000. 24 p.

Claus, R. W., Ewans, A. L., & Follen, G. J. Multi-disciplinary propulsion simulation using NPSS. AIAA(USAF)NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pt. 1 (A93-20301 06-66) AIAA-92-4709-CP, 1992. 10 p. DOI: 10.2514/6.1992-4709.

Shishov, E. V. Metody pogranichnogo sloja v problemah konvektivnogo teploobmena [Methods of boundary layer in convex heat exchange problems]. Moscow, MVTU Publ., 1973. 160 p.

Kopelev, S. Z., & Gurov, S. V. Teplovoe sostojanie jelementov konstrukcii aviacionnyh dvigatelej [Thermal state of aircraft engine structural elements]. Moscow, Mashinostroenie Publ., 1978. 208 p.

Smits, A. J., & Dussauge-Birkhäuser, J.-P. Turbulent shear layers in supersonic flow, Springer New York, 2006. 410 p.

Halatov, A. A., Avramenko, A. A., & Shevchuk, I. V. Teploobmen i gidrodinamika v poljah centrobezhnyh massovyh sil: V 4-h t. T. 2: Vrashhajushhiesja sistemy [Heat exchange and hydrodynamics in fields of centrifugal inertial forces: In 4 issues. Iss, 2: Rotated systems]. Kyiv: In-t tehn. teplofiziki NAN Ukrainy, 1996. 289 p.

Seghir-Ouali, S., Saury, D., Harmand, S., Phillipart, O., & Laloy, D. Convective heat transfer inside a rotating cylinder with an axial air flow. International Journal of Thermal Sciences, 2006, vol. 45, pp. 1166–1178. DOI: 10.1016/j.ijthermalsci.2006.01.017.

Shhukin, V. K. Teploobmen i gidrodinamika v poljah centrobezhnyh i massovyh sil [Heat exchange and hydrodynamics in fields of centrifugal inertial forces]. Moscow, Mashinostroenie Publ., 1970. 331 p.

Etemand, G. A. Free convection heat transfer from a rotating horizontal cylinder to ambient air with interferometric study of flow. Trans. ASME 77, 1955. 386 p.

Dropkin, D., & Carmi, A. Natural convection heat transfer from a rotating horizontal cylinder rotating in air. Trans. ASME 79, 1957. 741 p.

Becker, K. M. Measurements of convective heat transfer from a horizontal cylinder rotating in a pool of water. Transactions of the ASME, 1963, vol. 77. 22 p.

Bjorklund, J. S., & Kays, W. M. Heat transfer between concentric rotating cylinders. Journal of Heat Transfer, 1959, vol. 81, pp. 175–186.

Aoki, H., Nohira, H., & Arai, H. Convective heat transfer in an annulus with an inner rotating cylinder. Bull. JSME, 1967, vol. 10(37), pp. 523-532.

Tachibana, F., Fukui, S., & Mitsumura, H. Heat transfer in an annulus with an inner rotating cylinder. Bull. JSME, 1960, vol. 8(9), pp. 119-123.

Maron, D. M., & Cohen, S. Hydrodynamics and heat/mass transfer near rotating surfaces. Advances in Heat Transfer, 1991, vol. 21, pp. 141-183. DOI: 10.1016/S0065-2717(08)70335-6.

Becker, K. M., & Kaye, J. The influence of a radial temperature gradient on the instability of fluid flow in an annulus with an inner rotating cylinder. J. Heat Transfer, 1962, vol. 84, pp. 106-110.




DOI: https://doi.org/10.32620/aktt.2024.4sup1.14