Creation of a built-in torque measurement on the fan shaft of a turbofan engine
Abstract
Keywords
Full Text:
PDF (Українська)References
Soares, C. Gas turbines: A handbook of air, land and sea applications. Chapter 10. Performance testing new gas turbine engines: parameters and calculations. 2nd edition. Elsevier Inc., 2015, pp. 533-636.
Federal Acquisition regulations. Part 33. Subpart F – Block tests. Aircraft engines. Available at: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-33/subpart-F. (accessed 1.05.2024).
Brouckaert, J-F., Mirville, F., Phuah, K., & Taferner P. Clean Sky research and demonstration programmes for next generation aircraft engines. Aeronautical Journal, 2018, vol. 122, iss. 1254, pp. 1163-1175. DOI: 10.1017/aer.2018.37.
Whurr, J., & Beecroft, P. Rolls-Royce’s Long Term Civil Aircraft Propulsion System Concept and Technology Strategy. International Symposium on Air Breathing Engines. ISABE-2017-22531, 2017. 19 p.
Skibin, V. A., & Solonin, V. I. Raboty vedushhih aviadvigatelestroitel'nyh kompanij po sozdaniju perspektivnyh aviacionnyh dvigatelej (analiticheskij obzor) [Works of the leading engine designinf companies on creating perspectives of aircraft engines (analytical survey)]. Moscow, CIAM Publ., 2004. 424 p.
Yepifanov, S. V., & Podgors`ky`j, K. M. Analiz tochnosti ekspery`mental`nogo vy`znachennya KKD venty`lyatora z vy`kory`stannyam vy`miryuvachiv kruty`l`nogo momentu [Accuracy analysis of the fan efficiency experimental determination using torque meter]. Aviacijno-kosmichna texnika i texnologiya - Aerospace Technic and Technology, 2023, no. 1(185), pp. 35-46. DOI: 10.32620/aktt.2023.1.04.
Bodin, R. M. Speed or torque probe for gas turbine engines. Patent US, № US8549931, 2013.
Sirenko, S., Yepifanov, S., Podgorsky, K., & Nechunaev, S. New Approach to Torque Measurement Unit Development and its Calibration. Journal of Konbin, 2018, vol. 46, iss. 1, pp. 75–86. DOI: 10.2478/jok-2018-0024.
Oliynyk, O. V. Kontseptsiya i metody monitorynhu vyrobitku resursu aviatsiynykh HTD na osnovi identyfikatsiyi dynamiky temperaturnoho y napruzhenoho stanu osnovnykh detaley. Diss. Dokt. tekhn. nauk [Concept and methods of turbine engine life-time monitoring based on identification of the main parts thermal and stress state dynamics. Dr. eng. sci. diss]. Kharkiv, 2006. 245 p.
Maravillya, E. K. Pidvyshchennya tochnosti vyznachennya hranychnykh umov teploobminu dlya monitorynhu resursu robochykh lopatok turbin aviatsiynykh dvyhuniv. PhD Diss [Precision improvement of a heat exchange boundary conditions determining for aircraft engines turbine blades life-time monitoring. PhD diss]. Kharkiv, 2016. 138 p.
Shymanovs'ka, N. A. Formuvannya modeley temperaturnoho i napruzhenoho stanu detaley dlya system monitorynhu vyrobitku resursiv dvyhuniv bahatorezhymnykh litakiv. PhD Diss [Models of parts thermal and stress state forming for life-time monitoring systems of engines for multi-mode airplanes. PhD diss]. Kharkiv, 2008. 144 p.
Zelens'kyy, R. L. Pidvyshchennya tochnosti vyznachennya dynamichnykh kharakterystyk hazoturbinnykh dvyhuniv z urakhuvannyam prohrivu konstruktsiynykh elementiv. PhD Diss [Precision improvement of gas turbine engines dynamic performances determining taking into account design elements heating. PhD diss]. Kharkiv, 2015. 159 p.
Sedov, L. Y. Metody podobyya y razmernosty v mekhanyke [Methods of similarity and dimension in mechanics]. Moskow, Nauka Publ., 1967. 428 p.
Tereshchenko, Yu. M., Kulyk, M. S., Mitrakhovych, M. M. Teoriya teplovykh dvyhuniv. Hazodynamichnyy rozrakhunok elementiv hazotur¬binnykh dvyhuniv: navch. posibnyk [Heat engines theory. Gas-dynamic analysis of turbine engine elements: tutorial]. Kyiv, NAU Publ., 2015. 292 p.
Yepifanov, S. V., Kuznetsov, B. I., Bohayenko, I. M., Hrabovs'kyy, H. H., Dyukov, V. A., Kuz'menko, S. O., Ryumshyn, N. O., & Samets'kyy, O. O. Syntez system keruvannya ta diahnostuvannya hazoturbinnykh dvyhuniv [Synthesis of gas turbine engines control and diagnostic systems]. Kyiv, Tekhnika Publ., 1998. 312 p.
Visser, W. P. J., & Broomhead, M. J. GSP. A generic object-oriented gas turbine simulation environment. ASME Paper 2000-GT-2, 2000. 20 p.
Kurzke, J. Advanced user-friendly gas turbine performance calculation on a personal computer. ASME Paper 95-GT-147, 1995. 8 p.
Mathioudakis, K., Stamatis, A., Tsalavoutas, A., & Aretakis, N. Instructing the principles of gas turbine performance monitoring and diagnostics by means of interactive computer models. 45th ASME International Gas Turbine & Aeroengine Technical Congress, Munich, Germany, 8-11 May, 2000. 24 p.
Claus, R. W., Ewans, A. L., & Follen, G. J. Multi-disciplinary propulsion simulation using NPSS. AIAA(USAF)NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pt. 1 (A93-20301 06-66) AIAA-92-4709-CP, 1992. 10 p. DOI: 10.2514/6.1992-4709.
Shishov, E. V. Metody pogranichnogo sloja v problemah konvektivnogo teploobmena [Methods of boundary layer in convex heat exchange problems]. Moscow, MVTU Publ., 1973. 160 p.
Kopelev, S. Z., & Gurov, S. V. Teplovoe sostojanie jelementov konstrukcii aviacionnyh dvigatelej [Thermal state of aircraft engine structural elements]. Moscow, Mashinostroenie Publ., 1978. 208 p.
Smits, A. J., & Dussauge-Birkhäuser, J.-P. Turbulent shear layers in supersonic flow, Springer New York, 2006. 410 p.
Halatov, A. A., Avramenko, A. A., & Shevchuk, I. V. Teploobmen i gidrodinamika v poljah centrobezhnyh massovyh sil: V 4-h t. T. 2: Vrashhajushhiesja sistemy [Heat exchange and hydrodynamics in fields of centrifugal inertial forces: In 4 issues. Iss, 2: Rotated systems]. Kyiv: In-t tehn. teplofiziki NAN Ukrainy, 1996. 289 p.
Seghir-Ouali, S., Saury, D., Harmand, S., Phillipart, O., & Laloy, D. Convective heat transfer inside a rotating cylinder with an axial air flow. International Journal of Thermal Sciences, 2006, vol. 45, pp. 1166–1178. DOI: 10.1016/j.ijthermalsci.2006.01.017.
Shhukin, V. K. Teploobmen i gidrodinamika v poljah centrobezhnyh i massovyh sil [Heat exchange and hydrodynamics in fields of centrifugal inertial forces]. Moscow, Mashinostroenie Publ., 1970. 331 p.
Etemand, G. A. Free convection heat transfer from a rotating horizontal cylinder to ambient air with interferometric study of flow. Trans. ASME 77, 1955. 386 p.
Dropkin, D., & Carmi, A. Natural convection heat transfer from a rotating horizontal cylinder rotating in air. Trans. ASME 79, 1957. 741 p.
Becker, K. M. Measurements of convective heat transfer from a horizontal cylinder rotating in a pool of water. Transactions of the ASME, 1963, vol. 77. 22 p.
Bjorklund, J. S., & Kays, W. M. Heat transfer between concentric rotating cylinders. Journal of Heat Transfer, 1959, vol. 81, pp. 175–186.
Aoki, H., Nohira, H., & Arai, H. Convective heat transfer in an annulus with an inner rotating cylinder. Bull. JSME, 1967, vol. 10(37), pp. 523-532.
Tachibana, F., Fukui, S., & Mitsumura, H. Heat transfer in an annulus with an inner rotating cylinder. Bull. JSME, 1960, vol. 8(9), pp. 119-123.
Maron, D. M., & Cohen, S. Hydrodynamics and heat/mass transfer near rotating surfaces. Advances in Heat Transfer, 1991, vol. 21, pp. 141-183. DOI: 10.1016/S0065-2717(08)70335-6.
Becker, K. M., & Kaye, J. The influence of a radial temperature gradient on the instability of fluid flow in an annulus with an inner rotating cylinder. J. Heat Transfer, 1962, vol. 84, pp. 106-110.
DOI: https://doi.org/10.32620/aktt.2024.4sup1.14