Application of iodine plasma for electric propulsion

Sai Vigness Ramasamy, Leonid Bazyma

Abstract


Most state-of-the-art electric space propulsion systems, such as gridded and Hall effect thrusters, use xenon as the propellant gas. However, xenon is very rare and expensive to produce, and it is used in a number of competing industrial applications. Iodine is emerging as an attractive alternative to xenon in several electric propulsion technologies. Its lower cost and larger availability, solid state at standard temperature and pressure, its low vapor pressure and its low ionization potential make it an attractive option. Attempts to implement an alternative to xenon propellants (Iodine, O2 , N2 , H2 , CO2 etc) in conventional propulsion systems have been met with measured success. However, the use of chemically reactive species, such as O2, H2, or iodine, requires the chosen propulsion platform to be chemically compatible with the propellant. Significant reductions in the operational lifetime of the thruster because of chemical incompatibility negates any potential increase in thruster performance or propellant availability. Thus, careful material selection for the electric propulsion system itself and for the components employed on the satellite is required in the light of a typical space mission duration of several years. Due to the more complex reaction processes and energy loss channels in iodine plasma´s however, as well as the historical lack of reliable collision cross-section data, the development of accurate theoretical and numerical models has been hindered. The development of techniques that can be applied to chemically dissimilar propellants, focusing on electromagnetic behaviour, would represent a significant improvement in the state of discharge characterization and thruster analysis. In this work, we conducted a comparative analysis of the existing modeling results for various types of electric propulsion using iodine as a propellant gas, as well as the results of experiments with iodine plasma with an emphasis on the thrust-to-power ratio.

Keywords


electric propulsion; plasma thrusters; alternative propellants; iodine

Full Text:

PDF

References


Mazouffre, S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 2016, vol. 25, no. 3. Article no. 033002. 37 p. DOI: 10.1088/0963-0252/25/3/033002.

Tirila, V. G., Demairé, A., & Ryan, C. N. Review of alternative propellants in Hall thrusters. Acta Astronautica, 2023, vol. 212, pp. 284-306. DOI: 10.1016/j.actaastro.2023.07.047.

Zheng, P., Wu, J., Zhang, Y., & Wu, B. A Comprehensive Review of Atmosphere‐Breathing Electric Propulsion Systems. International Journal of Aerospace Engineering, 2020, vol. 1, Article no. 8811847. 21 p. DOI: 10.1155/2020/8811847.

Uematsu, K., Morimoto, S., & Kuriki, K. MPD thruster performance with various propellants. Journal of Spacecraft and Rockets, 1985, vol. 22, no. 4, pp. 412-416. DOI: 10.2514/3.25766.

Martinez-Sanchez, M., & Pollard, J. E. Spacecraft electric propulsion-an overview. Journal of propulsion and power, 1998, vol. 14, no. 5, pp. 688-699. DOI: 10.2514/2.5331.

Dietz, P., Gärtner, W., Koch, Q., Köhler, P. E., Teng, Y., Schreiner, P. R., & Klar, P. J. Molecular propellants for ion thrusters. Plasma Sources Science and Technology, 2019, vol. 28, no. 8, Article no. 084001. 15 p. DOI: 10.1088/1361-6595/ab2c6c.

Chadwick, A. R., Dally, B., Herdrich, G., & Kim, M. High-power inductive electric propulsion operation with alternative propellants. The Aeronautical Journal, 2020, vol. 124, no. 1272, pp. 151-169. DOI: 10.1017/aer.2019.141.

Borrfors, A. N., & Harding, D. J., Weissenrieder, J., Ciaralli, S., Hallock, A., & Brinck, T. Aromatic hydrocarbons as Molecular Propellants for Electric Propulsion Thrusters. Journal of Electric Propulsion, 2023, vol. 2, no. 1. 24 p. DOI: 10.1007/s44205-023-00059-6.

Rafalskyi, D., Martínez, J.M., Habl, L. et al. In-orbit demonstration of an iodine electric propulsion system. Nature 2021, vol. 599, no. 7885 pp. 411–415. DOI: 10.1038/s41586-021-04015-y.

Tompkins, J., Dutta, R., & Rovey, J. L. Plasma Hysteresis of Alternative Propellants in ECR Gridded Ion Thruster. In AIAA SCITECH 2024 Forum, AIAA paper 2024-1546. 24 p. DOI: 10.2514/6.2024-1546.

Barquero, S., Tabata, K., Tsukizaki, R., Merino, M., Navarro-Cavallé, J., & Nishiyama, K. Performance characterization of the μ10 electron-cyclotron-resonance ion thruster using alternative propellants: krypton vs. xenon. Acta Astronautica, 2023, vol. 211, pp. 750–754. DOI: 10.1016/j.actaastro.2023.06.036.

Jinghua, YANG, Shaoxia, JIA, Zhang, Z., Zhang, X., Ting, JIN., Long, LI., Yong, CAI, & Jian, CAI. Performance of a 4 cm iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2020, vol. 22, Article no. 094006, 7 p. DOI: 10.1088/2058-6272/ab891d.

Tsay, M., Frongillo, J., Zwahlen, J., & Paritsky, L. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016, AIAA paper 2016-4544. 11 p. DOI: 10.2514/6.2016-4544.

Szabo, J. J., Tedrake, R., Metivier, E., Paintal, S., & Taillefer, Z. Characterization of a one hundred Watt, long lifetime Hall effect thruster for small spacecraft. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, AIAA paper 2017-4728. 15 p. DOI: 10.2514/6.2017-4728.

Szabo, J., Pote, B., Paintal, S., Robin, M., Hillier, A., Branam, R. D., & Huffmann, R. E. Performance evaluation of an iodine-vapor Hall thruster. Journal of Propulsion and Power, 2012, vol. 28, no. 4, pp. 848-857. DOI: 10.2514/1.B34291.

Kamhawi, H., Haag, T., Benavides, G., Hickman, T., Smith, T., Williams, G., & Lee, L. P. Overview of iodine propellant Hall thruster development activities at NASA glenn research center. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference 2016, AIAA 2016-4729. 16 p. DOI: 10.2514/6.2016-4729.

Szabo, J., Robin, M., Paintal, S., Pote, B., Hruby, V., & Freeman, C. Iodine plasma propulsion test results at 1–10 kW. IEEE Transactions on Plasma Science, 2015, vol. 43, no. 1, pp. 141-148. DOI: 10.1109/TPS.2014.2367417.

Shirasu, K., Kuwabara, H., Matsuura, M., Koizumi, H., Nakagawa, Y., Watanabe, H., ... & Komurasaki, K. Demonstration and experimental characteristics of a water-vapor Hall thruster. Journal of Electric Propulsion, 2023, vol. 2, no. 1. 19 p. DOI: 10.1007/s44205-023-00047-w.

Pekker, L., & Keidar, M. Analysis of airbreathing Hall-effect thrusters. Journal of propulsion and power, 2012, vol. 28, no. 6, pp. 1399–1405. DOI: 10.2514/1.B34441.

Hou, L., Shen, Y., Tang, H., & Zhao, W. Improvement on stability of water Arcjet. IEEE Transactions on Plasma Science, 2011, vol. 39, no. 1, pp. 608-614. DOI: 10.1109/TPS.2010.2088132.

Charles, C., Boswell, R. W., Laine, R., & MacLellan, P. An experimental investigation of alternative propellants for the helicon double layer thruster. Journal of Physics D: Applied Physics, 2008, vol. 41, Article no. 175213. 6 p. DOI: 10.1088/0022-3727/41/17/175213.

Petro, E. M., & Sedwick, R. J. Effects of water-vapor propellant on electrodeless thruster performance. Journal of Propulsion and Power, 2017, vol. 33, no. 6, pp. 1410-1417. DOI: 10.2514/1.B36389.

Bellomo, N., Magarotto, M., Manente, M. et al. Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system. CEAS Space Journal, 2022, vol. 14, pp. 79–90. DOI: 10.1007/s12567-021-00374-4.

Lafleur, T., Habl, L., Rossi, E. Z., & Rafalskyi, D. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, vol. 31, no. 11, Article no. 114001. DOI: 10.1088/1361-6595/ac9ad7.

Grondein, P., Lafleur, T., Chabert, P., & Aanesland A. Global model of an iodine gridded plasma thruster. Physics of Plasmas, 2016, vol. 23, no. 3, Article no. 033514. DOI: 10.1063/1.4944882.

Szabo, J., & Robin, M. Plasma species measurements in the plume of an iodine fueled hall thruster. Journal of Propulsion and Power, 2014, vol. 30, no. 5, pp. 1357–1367. DOI: 10.2514/1.B35075.

Freund, R. S., Wetzel, R. C., Shul, R. J., & Hayes, T. R. Cross-section measurements for electron-impact ionization of atoms. Physical Review A, 1990, vol. 41, no. 7, pp. 3575–3595. DOI: 10.1103/PhysRevA.41.3575.

Hayes, T. R., Wetzel, R. C., & Freund, R. S. Absolute electron-impact-ionization cross-section measurements of the halogen atoms. Physical Review A, 1987, vol. 35, no. 2, pp. 578-584. DOI: 10.1103/PhysRevA.35.578.

Wetzel, R. C., Baiocchi, F. A., Hayes, T. R., & Freund, R. S. Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method. Physical Review A, 1987, vol.35, no. 2, pp. 559-557. DOI: 10.1103/PhysRevA.35.559.

Goebel, D. M., & Katz, I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. John Wiley & Sons, NJ, USA, 2008. 482 p.

Jahn, R. G. Physics of Electric Propulsion. McGraw-Hill. New York City, 1968. 339 p.

Szabo, J., Robin, M., Paintal, S., Pote, B., & Hruby, V. High density Hall thruster propellant investigations. In Proc. 48th AIAA/ASME/SAE/ASEE Joint Propuls. Conf., Jul. 2012, AIAA paper 2012-3853, 15 p. DOI: 10.2514/6. 2012-3853.

Longmier, B. W., Squire, J. P., Olsen, C. S., Cassady, L. D., Ballenger, M. G., Carter, M. D., & Bering III, E. A. Improved efficiency and throttling range of the VX-200 magnetoplasma thruster. Journal of Propulsion and Power, 2014, vol. 30 (1), pp. 123-132. DOI: 10.2514/1.B34801.

Esteves, B., Drag, C., Bourdon, A., & Alvarez-Laguna, A. Experimental and numerical investigation of a gridded ion thruster running with different propellants (I2, Xe, Kr, Ar). In International Electric Propulsion Conference, Massachusetts Institute o f Technology, Cambridge, MA, USA , June 2022, p. 416. Avaliable et: https://www.researchgate.net/publication/362155539_Experimental_and_numerical_investigation_of_a_gridded_ion_thruster_running_with_different_propellants_I2_Xe_Kr_Ar. (accessed 24 April 2024).

Taillefer, Z. R., Blandino, J. J., & Szabo, J. Characterization of a Barium Oxide Cathode Operating on Xenon and Iodine Propellants. Journal of Propulsion and Power, 2020, vol. 36, no. 4, pp. 575–585. DOI: 10.2514/1.b37315

Esteves, B., Vicol, R., Laurent, B., Duchemin, O., Tsankov, T. V., Petronio, F., & Chabert, P. Iodine (I2) and noble gases (Xe, Kr, Ar) plasma physics for HETs with preliminary characterisation of the PPS® X00 running on these alternative propellants. In International Electric Propulsion Conference, Toulouse, France, June 2024, p. 559. Avaliable et: https://www.researchgate.net/publication/381924720_Iodine_I2_and_noble_gases_Xe_Kr_Ar_plasma_physics_for_HETs_with_preliminary_characterisation_of_the_PPSRX00_running_on_these_alternative_propellants (accessed 10 July 2024).

Esteves, B., Marmuse, F., Drag, C., Bourdon, A., Laguna, A. A., & Chabert, P. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, vol. 31, no. 8, Article no. 085007, 34 p. DOI: 10.1088/1361-6595/ac8288.

Vinci, A. E., Bianchi, F. M., & Rafalskyi, D. Modeling and experimental results of low-power iodine-fed Hall thruster propulsion system. In International Electric Propulsion Conference, Toulouse, France, June 2024, p. 121. Avaliable et: https://www.researchgate.net/publication/382067633_Modeling_and_experimental_results_of_low-power_iodine-fed_Hall_thruster_propulsion_system (accessed 10 July 2024).




DOI: https://doi.org/10.32620/aktt.2024.4sup1.10