Application of iodine plasma for electric propulsion
Abstract
Keywords
Full Text:
PDFReferences
Mazouffre, S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 2016, vol. 25, no. 3. Article no. 033002. 37 p. DOI: 10.1088/0963-0252/25/3/033002.
Tirila, V. G., Demairé, A., & Ryan, C. N. Review of alternative propellants in Hall thrusters. Acta Astronautica, 2023, vol. 212, pp. 284-306. DOI: 10.1016/j.actaastro.2023.07.047.
Zheng, P., Wu, J., Zhang, Y., & Wu, B. A Comprehensive Review of Atmosphere‐Breathing Electric Propulsion Systems. International Journal of Aerospace Engineering, 2020, vol. 1, Article no. 8811847. 21 p. DOI: 10.1155/2020/8811847.
Uematsu, K., Morimoto, S., & Kuriki, K. MPD thruster performance with various propellants. Journal of Spacecraft and Rockets, 1985, vol. 22, no. 4, pp. 412-416. DOI: 10.2514/3.25766.
Martinez-Sanchez, M., & Pollard, J. E. Spacecraft electric propulsion-an overview. Journal of propulsion and power, 1998, vol. 14, no. 5, pp. 688-699. DOI: 10.2514/2.5331.
Dietz, P., Gärtner, W., Koch, Q., Köhler, P. E., Teng, Y., Schreiner, P. R., & Klar, P. J. Molecular propellants for ion thrusters. Plasma Sources Science and Technology, 2019, vol. 28, no. 8, Article no. 084001. 15 p. DOI: 10.1088/1361-6595/ab2c6c.
Chadwick, A. R., Dally, B., Herdrich, G., & Kim, M. High-power inductive electric propulsion operation with alternative propellants. The Aeronautical Journal, 2020, vol. 124, no. 1272, pp. 151-169. DOI: 10.1017/aer.2019.141.
Borrfors, A. N., & Harding, D. J., Weissenrieder, J., Ciaralli, S., Hallock, A., & Brinck, T. Aromatic hydrocarbons as Molecular Propellants for Electric Propulsion Thrusters. Journal of Electric Propulsion, 2023, vol. 2, no. 1. 24 p. DOI: 10.1007/s44205-023-00059-6.
Rafalskyi, D., Martínez, J.M., Habl, L. et al. In-orbit demonstration of an iodine electric propulsion system. Nature 2021, vol. 599, no. 7885 pp. 411–415. DOI: 10.1038/s41586-021-04015-y.
Tompkins, J., Dutta, R., & Rovey, J. L. Plasma Hysteresis of Alternative Propellants in ECR Gridded Ion Thruster. In AIAA SCITECH 2024 Forum, AIAA paper 2024-1546. 24 p. DOI: 10.2514/6.2024-1546.
Barquero, S., Tabata, K., Tsukizaki, R., Merino, M., Navarro-Cavallé, J., & Nishiyama, K. Performance characterization of the μ10 electron-cyclotron-resonance ion thruster using alternative propellants: krypton vs. xenon. Acta Astronautica, 2023, vol. 211, pp. 750–754. DOI: 10.1016/j.actaastro.2023.06.036.
Jinghua, YANG, Shaoxia, JIA, Zhang, Z., Zhang, X., Ting, JIN., Long, LI., Yong, CAI, & Jian, CAI. Performance of a 4 cm iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2020, vol. 22, Article no. 094006, 7 p. DOI: 10.1088/2058-6272/ab891d.
Tsay, M., Frongillo, J., Zwahlen, J., & Paritsky, L. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016, AIAA paper 2016-4544. 11 p. DOI: 10.2514/6.2016-4544.
Szabo, J. J., Tedrake, R., Metivier, E., Paintal, S., & Taillefer, Z. Characterization of a one hundred Watt, long lifetime Hall effect thruster for small spacecraft. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, AIAA paper 2017-4728. 15 p. DOI: 10.2514/6.2017-4728.
Szabo, J., Pote, B., Paintal, S., Robin, M., Hillier, A., Branam, R. D., & Huffmann, R. E. Performance evaluation of an iodine-vapor Hall thruster. Journal of Propulsion and Power, 2012, vol. 28, no. 4, pp. 848-857. DOI: 10.2514/1.B34291.
Kamhawi, H., Haag, T., Benavides, G., Hickman, T., Smith, T., Williams, G., & Lee, L. P. Overview of iodine propellant Hall thruster development activities at NASA glenn research center. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference 2016, AIAA 2016-4729. 16 p. DOI: 10.2514/6.2016-4729.
Szabo, J., Robin, M., Paintal, S., Pote, B., Hruby, V., & Freeman, C. Iodine plasma propulsion test results at 1–10 kW. IEEE Transactions on Plasma Science, 2015, vol. 43, no. 1, pp. 141-148. DOI: 10.1109/TPS.2014.2367417.
Shirasu, K., Kuwabara, H., Matsuura, M., Koizumi, H., Nakagawa, Y., Watanabe, H., ... & Komurasaki, K. Demonstration and experimental characteristics of a water-vapor Hall thruster. Journal of Electric Propulsion, 2023, vol. 2, no. 1. 19 p. DOI: 10.1007/s44205-023-00047-w.
Pekker, L., & Keidar, M. Analysis of airbreathing Hall-effect thrusters. Journal of propulsion and power, 2012, vol. 28, no. 6, pp. 1399–1405. DOI: 10.2514/1.B34441.
Hou, L., Shen, Y., Tang, H., & Zhao, W. Improvement on stability of water Arcjet. IEEE Transactions on Plasma Science, 2011, vol. 39, no. 1, pp. 608-614. DOI: 10.1109/TPS.2010.2088132.
Charles, C., Boswell, R. W., Laine, R., & MacLellan, P. An experimental investigation of alternative propellants for the helicon double layer thruster. Journal of Physics D: Applied Physics, 2008, vol. 41, Article no. 175213. 6 p. DOI: 10.1088/0022-3727/41/17/175213.
Petro, E. M., & Sedwick, R. J. Effects of water-vapor propellant on electrodeless thruster performance. Journal of Propulsion and Power, 2017, vol. 33, no. 6, pp. 1410-1417. DOI: 10.2514/1.B36389.
Bellomo, N., Magarotto, M., Manente, M. et al. Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system. CEAS Space Journal, 2022, vol. 14, pp. 79–90. DOI: 10.1007/s12567-021-00374-4.
Lafleur, T., Habl, L., Rossi, E. Z., & Rafalskyi, D. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, vol. 31, no. 11, Article no. 114001. DOI: 10.1088/1361-6595/ac9ad7.
Grondein, P., Lafleur, T., Chabert, P., & Aanesland A. Global model of an iodine gridded plasma thruster. Physics of Plasmas, 2016, vol. 23, no. 3, Article no. 033514. DOI: 10.1063/1.4944882.
Szabo, J., & Robin, M. Plasma species measurements in the plume of an iodine fueled hall thruster. Journal of Propulsion and Power, 2014, vol. 30, no. 5, pp. 1357–1367. DOI: 10.2514/1.B35075.
Freund, R. S., Wetzel, R. C., Shul, R. J., & Hayes, T. R. Cross-section measurements for electron-impact ionization of atoms. Physical Review A, 1990, vol. 41, no. 7, pp. 3575–3595. DOI: 10.1103/PhysRevA.41.3575.
Hayes, T. R., Wetzel, R. C., & Freund, R. S. Absolute electron-impact-ionization cross-section measurements of the halogen atoms. Physical Review A, 1987, vol. 35, no. 2, pp. 578-584. DOI: 10.1103/PhysRevA.35.578.
Wetzel, R. C., Baiocchi, F. A., Hayes, T. R., & Freund, R. S. Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method. Physical Review A, 1987, vol.35, no. 2, pp. 559-557. DOI: 10.1103/PhysRevA.35.559.
Goebel, D. M., & Katz, I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. John Wiley & Sons, NJ, USA, 2008. 482 p.
Jahn, R. G. Physics of Electric Propulsion. McGraw-Hill. New York City, 1968. 339 p.
Szabo, J., Robin, M., Paintal, S., Pote, B., & Hruby, V. High density Hall thruster propellant investigations. In Proc. 48th AIAA/ASME/SAE/ASEE Joint Propuls. Conf., Jul. 2012, AIAA paper 2012-3853, 15 p. DOI: 10.2514/6. 2012-3853.
Longmier, B. W., Squire, J. P., Olsen, C. S., Cassady, L. D., Ballenger, M. G., Carter, M. D., & Bering III, E. A. Improved efficiency and throttling range of the VX-200 magnetoplasma thruster. Journal of Propulsion and Power, 2014, vol. 30 (1), pp. 123-132. DOI: 10.2514/1.B34801.
Esteves, B., Drag, C., Bourdon, A., & Alvarez-Laguna, A. Experimental and numerical investigation of a gridded ion thruster running with different propellants (I2, Xe, Kr, Ar). In International Electric Propulsion Conference, Massachusetts Institute o f Technology, Cambridge, MA, USA , June 2022, p. 416. Avaliable et: https://www.researchgate.net/publication/362155539_Experimental_and_numerical_investigation_of_a_gridded_ion_thruster_running_with_different_propellants_I2_Xe_Kr_Ar. (accessed 24 April 2024).
Taillefer, Z. R., Blandino, J. J., & Szabo, J. Characterization of a Barium Oxide Cathode Operating on Xenon and Iodine Propellants. Journal of Propulsion and Power, 2020, vol. 36, no. 4, pp. 575–585. DOI: 10.2514/1.b37315
Esteves, B., Vicol, R., Laurent, B., Duchemin, O., Tsankov, T. V., Petronio, F., & Chabert, P. Iodine (I2) and noble gases (Xe, Kr, Ar) plasma physics for HETs with preliminary characterisation of the PPS® X00 running on these alternative propellants. In International Electric Propulsion Conference, Toulouse, France, June 2024, p. 559. Avaliable et: https://www.researchgate.net/publication/381924720_Iodine_I2_and_noble_gases_Xe_Kr_Ar_plasma_physics_for_HETs_with_preliminary_characterisation_of_the_PPSRX00_running_on_these_alternative_propellants (accessed 10 July 2024).
Esteves, B., Marmuse, F., Drag, C., Bourdon, A., Laguna, A. A., & Chabert, P. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, vol. 31, no. 8, Article no. 085007, 34 p. DOI: 10.1088/1361-6595/ac8288.
Vinci, A. E., Bianchi, F. M., & Rafalskyi, D. Modeling and experimental results of low-power iodine-fed Hall thruster propulsion system. In International Electric Propulsion Conference, Toulouse, France, June 2024, p. 121. Avaliable et: https://www.researchgate.net/publication/382067633_Modeling_and_experimental_results_of_low-power_iodine-fed_Hall_thruster_propulsion_system (accessed 10 July 2024).
DOI: https://doi.org/10.32620/aktt.2024.4sup1.10