Nonlinear model of interaction of unsteady fluid flow with structure in hydraulic systems of aircraft and helicopters
Abstract
Keywords
Full Text:
PDFReferences
Su, H., Sheng, L., Zhao, S., Lu, C., Zhu, R., Chen, Y., & Fu, Q. Water Hammer Characteristics and Component Fatigue Analysis of the Essential Service Water System in Nuclear Power Plants. Processes, 2023, vol. 11, iss. 12, article no. 3305. DOI: 10.3390/pr11123305.
Adamkowski, A., Lewandowski, M., & Lewandowski, S. Fatigue life analysis of hydropower pipelines using the analytical model of stress concentration in welded joints with angular distortions and considering the influence of water hammer damping. Thin-Walled Structures, 2021, vol. 159, article no. 107350. pp. 1-12. DOI: 10.1016/j.tws.2020.107350.
Walters, W. T., & Leishear, R. A. When the Joukowsky Equation Does Not Predict Maximum Water Hammer Pressures. Journal of Pressure Vessel Technology, vol. 141, iss. 6, article no. 060801, pp. 1-10. DOI: 10.1115/1.4044603.
Leishear, R. A. Water hammer and Fatigue Corrosion –I –A Piping System Failure Analysis. Leishear Engineering, LLC, 2023, pp. 1-19. DOI: 10.13140/RG.2.2.19541.09449.
Allievi, L. B. Teoria generale del moto perturbato dell’acqua nei tubi in pressione (colpo d’ariete). Annali della Società degli ingegneri e degli architetti italiani, 1903, vol. 17, pp. 285-325. Available at: https://digit.biblio.polito.it/1119/ (accessed Jan. 10 2024).
Joukowski, N. E. Memories of Imperial Academy Society of St. Petrburg, vol. 9, iss. 5. (Russian translated by O. Simin 1904) Proc. Amer. Water Assoc., 1898, vol. 24, pp. 341-424.
Skalak, R. An extension of the theory of water hammer. Water Power, 1955, no. 7, pp. 458-462.
Skalak, R. An extension of the theory of water hammer. Water Power, 1956, no. 8, pp. 17-22.
Tijsseling, A. S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration. Journal of Fluids and Structures, 2003, vol. 18, iss. 2, pp. 179-196. DOI: 10.1016/j.jfluidstructs.2003.07.001.
Wiggert, D. C., & Tijsseling, A. S. Fluid transient and fluid-structure interaction in flexible liquid-filled piping. Applied Mechanics Reviews, 2001, vol. 54, iss. 5, pp. 455-481. DOI: 10.1115/1.1404122.
Li, Q. S., Asce, M., Yang, K., & Zhang, L. Analytical solution for Fluid-Stuctures interaction in liquid-filled pipes subjected to impact-induced water hammer. Journal of Engineering Mechanics, 2003, vol. 129, iss. 12, pp. 1408-1417. DOI: 10.1061/(ASCE)0733-9399(2003)129:12(1408).
Lukianov, P. V., Syvashenko, T. I., & Yakymenko, B. M. Udarna khvylya v ridyni, shcho znakhodytʹsya v pruzhniy tsylindrychniy obolontsi neskinchennoyi dovzhyny [Shock wave in a liquid located in an elastic cylindrical shell of infinite length]. Promyslova hidravlika і pnevmatyka – Industrial hydraulics and pneumatics, 2019, vol. 2(64), pp. 38-46.
Lukianov, P. V., & Pavlova, K. S. Unsteady flow of droplet liquid in hydraulic systems of aircraft and helicopters: models and analytical solutions. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2024, no. 1, pp. 32-42. DOI: 10.32620/aktt.2024.1.03.
Lukianov, P. V., & Pavlova, K. S. Unsteady flow in bubble liquid in hydraulic system of aircraft snd helicopters. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2024, no. 2, pp. 4-14. DOI: 10.32620/aktt.2024.2.01.
Darcy, H. Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux. Mallet- Bachelier, Paris, 1857. 268 p. Available at: https://search.worldcat.org/title/Recherches-experimentales-relatives-au-mouvement-de-l'eau-dans-les-tuyaux/oclc/25608493 (accessed 10 Dec. 2023) (in French).
Weisbach, J. Lehrbuch der Ingenieur- und Maschinen-Mechanik, Vol. 1. Theoretische Mechanik, Braunschweig, Vieweg Publ., 1855. 946 p. Available at: https://www.digitale-sammlungen.de/de/view/bsb10081227 (accessed 10 Dec. 2023) (In German).
Bergant, A., Simpson, A. R., & Vitkovsky, J. Developments in unsteady pipe flow friction modeling. Journal of Hydraulic Research, 2001, vol. 39, iss. 3, pp. 249-257. DOI: 10.1080/00221680109499828.
Zielke, W. Frequency-Dependent Friction in Transient Pipe Flow. Journal of Basic Engineering, 1967, vol. 90, iss. 1, pp. 109-115. DOI: 10.1115/1.3605049.
Riemann, B. Über Die Fortpflanzung Ebener Luftwellen von Endlicher Schwingungsweite (German Edition). Leopold Classic Library Publ., 2017. 32 p. (In German). Available at: https://www.emis.de/classics/Riemann/Welle.pdf. (accessed 10 Dec. 2023) (In German).
Korn, G. A., & Korn, T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Civil and Mechanical Engineering). Dover Publications; Revised edition, 2000. 1152 p. ISBN: 978-0486411477.
DOI: https://doi.org/10.32620/aktt.2024.4.01