Mathematical modeling of processes of diesel-gas turbine power plants with thermochemical treatment of fuel

Oleksandr Cherednichenko, Mykhaylo Tkach, Oleksandr Mytrofanov, Dmytro Kostenko

Abstract


This paper discussed the methodological aspects of the study using methods of mathematical modeling of processes in ship power plants with thermochemical fuel treatment. The results of the study of physical and chemical processes in structural and functional blocks, simulating individual links of the thermodynamic cycle, are considered. The combination of blocks with links in the form of material and energy flows makes it possible to model the complete scheme of the mathematical model of the power module. Due to the diversity and complexity of the processes in the combined diesel-gas turbine power complex with a thermochemical fuel treatment system, when modeling, the characteristics of the power equipment were determined separately, followed by merging the results obtained and combining the models with links in the form of material and energy flows. Mathematical models of a gas turbine engine, a recycling circuit, a thermochemical fuel treatment unit were created using the Aspen Plus physical and chemical processes modeling system. Working processes in the internal combustion engine were modeled using the CHEMKIN software package. It has been proven that the universal mathematical models of heat engines, which are part of the power module with thermochemical fuel treatment, require adjustment of the selected basic characteristics. Therefore, mathematical models of structural-functional blocks and groups of blocks contain algorithms for setting up models when they are verified by objective functions. The proposed algorithms provide verification of the developed mathematical models in terms of existing or prospective gas turbine engines and internal combustion engines. These algorithms provide the possibility of correct adjustment of the equipment parameters of diesel-gas turbine power complexes with thermochemical fuel treatment. The mathematical model of the internal combustion engine operating cycle based on the CHEMKIN software package provides an opportunity to conduct a primary assessment of the efficiency of energy conversion in the working cylinder. The results of evaluating the adequacy of the mathematical model of the ICE operating cycle based on the CHEMKIN software package showed a satisfactory agreement between the obtained results and experimental data. The maximum root-mean-square error of the calculated data obtained on the basis of the model is within 8.5%.

Keywords


ship power plant; thermochemical fuel treatment; gas turbine engine; mathematical modeling

References


Nosach, V. G. Energyya toplyva [Energy of Fuel]. Kyiv, Nauk. dumka Publ., 1989. 148 p.

Cherednychenko, A. K. Primenenie termohimičeskoj utilizacii v ènergetičeskih ustanovkah vysokotehnologičnyh sudov [Application of thermochemical waste heat recovery in power plants of high-tech ships]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 7 (159), pp. 58–64. DOI: 10.32620/aktt.2019.7.07.

Tymoshevskyj, B. G., Tkach, M. R., Mytrofanov, O. S., Poznanskyj, A. S., Proskurin, A. Yu. Eksperymentalne doslidzhennya parametriv porshnevogo DVZ iz systemoyu termoximichnoyi konversiyi bioetanolu [Experimental study of the parameters of a reciprocating internal combustion engine with a system of thermochemical conversion of bioethanol]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2011, no. 2, pp. 3–8.

Cherednichenko, O. Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Problemele Energeticii Regionale, 2019, iss. 1, pp. 102-111. DOI: 10.5281/zenodo.2650429.

Cherednychenko, A. K. Modelirovanie ènergokompleksov s termohimičeskoj regeneraciej tepla dlâ sudov gazovozov [Modeling of efficiency of ship power plants with thermochemical heat recovery for liquefied natural gas carriers]. Vestnyk dvygatelestroenyya – Herald engine building, 2016, no. 2, pp. 36–41.

Caballero, J., Navarro, M., Femenia, R., Grossmann I. Integration of different models in the design of chemical processes: Application to the design of a power plant. Applied Energy, 2014, vol. 124, pp. 256–273. DOI: 10.1016/j.apenergy.2014.03.018.

Haydary, J. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Bratislava : John Wiley & Sons, 2018. 448 р.

Menyn, B. M. . Universal’naâ metrika rasčeta pogrešnosti matematičeskoj modeli tehnologičeskogo processa i konstrukcij holodil’nogo oborudovaniâ [Universal metric of calculation of mathematical model uncertainty for technological processes and constructions of refrigeration equipment]. Scientific Journal of St Petersburg State University of Low Temperature and Food Technologies: Refrigeration and Air Conditioning, 2016, no. 4, pp. 16–22. DOI: 10.17586/2310-1148-2016-9-4-16-22.

Kat, C.-J., Els, P. S. Validation metric based on relative error. Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, 2012, no. 18 (5), pp. 487-520, DOI: 10.1080/13873954.2012.663392.

Brillouin, Leon. Science and Information Theory. Dover Books on Physics, Corporation, 2013. 351 p.

Menin, B. M. Comparative error of the phenomena model. Intern. Referred Journal of Engineering and Science, 2014, vol. 3, iss. 11, pp. 68-76.

Cherednichenko, O. K. Efektyvnist energetychnyx ustanovok z termoximichnymy systemamy dlya vysokotexnologichnyx suden i morskyx ob'yektiv naftogazovydobuvannya. Diss. dokt. tekhn. nauk [Efficiency of power plants with thermochemical systems for high-tech ships and offshore oil and gas facilities. Dr. eng. sci. diss.]. NUK, Mykolayiv, 2020. 382 p.

Verbuck, V. M., Milman, D. I. Veckstein's method as a modification of the transversal method. USSR Computational Mathematics and Mathematical Physics, 1977, vol. 17, iss. 2, pp. 215–216. DOI: 10.1016/0041-5553(77)90052-0.

ANSYS Chemkin Theory Manual 17.0 (15151). Reaction Design, San Diego, 2015. 324 p.

Tkach, M. R., Tymoshevskyj, B. G., Thy, B. A. Èksperimental’noe issledovanie raboty sudovogo DVS na al’ternativnom toplive [Experimental study of the operation of marine internal combustion engines on alternative fuels]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2006, no. 2, pp. 114-118.

Tkach, M. R., Tymoshevskyj, B. G., Mytrofanov, O. S., Poznanskyj, A. S., Proskurin, A. Yu. Osoblyvosti matematychnogo modelyuvannya procesu zgoryannya porshnevyx dvyguniv pracyuyuchyx z dobavkamy syntez-gazu [Features of mathematical modeling of the combustion process of reciprocating engines operating with synthesis gas additives] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 9 (144), pp. 14–18.

Tymoshevskyj, B. G., Tkach, M. R., Mytrofanov, O. S., Poznanskyj, A. S. Harakteristiki processa sgoraniâ dvigatelâ 2Č 7,2/6 s dobavkami do 65% sintez-gaza k benzinu [Characteristics of the 2 cylinder 4-stroke engine 7,2/6 with additives to 65% of synthesis gas to gasoline]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2015, no. 1. pp. 33–37.

Ivanov, G. M., Kuzneczov, N. D., Chystyakov, V. S. Teplotekhnicheskiye izmereniya i pribory [Heat engineering measurements and devices]. Moscow, Energoatomyzdat Publ., 1984. 232 p.




DOI: https://doi.org/10.32620/aktt.2022.4sup1.11