Mathematical modeling of processes of diesel-gas turbine power plants with thermochemical treatment of fuel
Abstract
Keywords
Full Text:
PDF (Українська)References
Nosach, V. G. Energyya toplyva [Energy of Fuel]. Kyiv, Nauk. dumka Publ., 1989. 148 p.
Cherednychenko, A. K. Primenenie termohimičeskoj utilizacii v ènergetičeskih ustanovkah vysokotehnologičnyh sudov [Application of thermochemical waste heat recovery in power plants of high-tech ships]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 7 (159), pp. 58–64. DOI: 10.32620/aktt.2019.7.07.
Tymoshevskyj, B. G., Tkach, M. R., Mytrofanov, O. S., Poznanskyj, A. S., Proskurin, A. Yu. Eksperymentalne doslidzhennya parametriv porshnevogo DVZ iz systemoyu termoximichnoyi konversiyi bioetanolu [Experimental study of the parameters of a reciprocating internal combustion engine with a system of thermochemical conversion of bioethanol]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2011, no. 2, pp. 3–8.
Cherednichenko, O. Efficiency Analysis of Methanol Usage for Marine Turbine Power Plant Operation Based on Waste Heat Chemical Regeneration. Problemele Energeticii Regionale, 2019, iss. 1, pp. 102-111. DOI: 10.5281/zenodo.2650429.
Cherednychenko, A. K. Modelirovanie ènergokompleksov s termohimičeskoj regeneraciej tepla dlâ sudov gazovozov [Modeling of efficiency of ship power plants with thermochemical heat recovery for liquefied natural gas carriers]. Vestnyk dvygatelestroenyya – Herald engine building, 2016, no. 2, pp. 36–41.
Caballero, J., Navarro, M., Femenia, R., Grossmann I. Integration of different models in the design of chemical processes: Application to the design of a power plant. Applied Energy, 2014, vol. 124, pp. 256–273. DOI: 10.1016/j.apenergy.2014.03.018.
Haydary, J. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Bratislava : John Wiley & Sons, 2018. 448 р.
Menyn, B. M. . Universal’naâ metrika rasčeta pogrešnosti matematičeskoj modeli tehnologičeskogo processa i konstrukcij holodil’nogo oborudovaniâ [Universal metric of calculation of mathematical model uncertainty for technological processes and constructions of refrigeration equipment]. Scientific Journal of St Petersburg State University of Low Temperature and Food Technologies: Refrigeration and Air Conditioning, 2016, no. 4, pp. 16–22. DOI: 10.17586/2310-1148-2016-9-4-16-22.
Kat, C.-J., Els, P. S. Validation metric based on relative error. Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, 2012, no. 18 (5), pp. 487-520, DOI: 10.1080/13873954.2012.663392.
Brillouin, Leon. Science and Information Theory. Dover Books on Physics, Corporation, 2013. 351 p.
Menin, B. M. Comparative error of the phenomena model. Intern. Referred Journal of Engineering and Science, 2014, vol. 3, iss. 11, pp. 68-76.
Cherednichenko, O. K. Efektyvnist energetychnyx ustanovok z termoximichnymy systemamy dlya vysokotexnologichnyx suden i morskyx ob'yektiv naftogazovydobuvannya. Diss. dokt. tekhn. nauk [Efficiency of power plants with thermochemical systems for high-tech ships and offshore oil and gas facilities. Dr. eng. sci. diss.]. NUK, Mykolayiv, 2020. 382 p.
Verbuck, V. M., Milman, D. I. Veckstein's method as a modification of the transversal method. USSR Computational Mathematics and Mathematical Physics, 1977, vol. 17, iss. 2, pp. 215–216. DOI: 10.1016/0041-5553(77)90052-0.
ANSYS Chemkin Theory Manual 17.0 (15151). Reaction Design, San Diego, 2015. 324 p.
Tkach, M. R., Tymoshevskyj, B. G., Thy, B. A. Èksperimental’noe issledovanie raboty sudovogo DVS na al’ternativnom toplive [Experimental study of the operation of marine internal combustion engines on alternative fuels]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2006, no. 2, pp. 114-118.
Tkach, M. R., Tymoshevskyj, B. G., Mytrofanov, O. S., Poznanskyj, A. S., Proskurin, A. Yu. Osoblyvosti matematychnogo modelyuvannya procesu zgoryannya porshnevyx dvyguniv pracyuyuchyx z dobavkamy syntez-gazu [Features of mathematical modeling of the combustion process of reciprocating engines operating with synthesis gas additives] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 9 (144), pp. 14–18.
Tymoshevskyj, B. G., Tkach, M. R., Mytrofanov, O. S., Poznanskyj, A. S. Harakteristiki processa sgoraniâ dvigatelâ 2Č 7,2/6 s dobavkami do 65% sintez-gaza k benzinu [Characteristics of the 2 cylinder 4-stroke engine 7,2/6 with additives to 65% of synthesis gas to gasoline]. Dvyguny vnutrishnogo zgoryannya – Internal combustion engine, 2015, no. 1. pp. 33–37.
Ivanov, G. M., Kuzneczov, N. D., Chystyakov, V. S. Teplotekhnicheskiye izmereniya i pribory [Heat engineering measurements and devices]. Moscow, Energoatomyzdat Publ., 1984. 232 p.
DOI: https://doi.org/10.32620/aktt.2022.4sup1.11