Ignition of a vacuum arc discharge in plasma sources by non-traditional methods

Iurii Sysoiev, Yurii Shyrokyi, Andrey Sysoiev

Abstract


The subject of research in this article is the processes of excitation of a vacuum-arc discharge in plasma sources by unconventional methods: the transition of a glow discharge into an arc discharge (TGA) and arc initiation using laser radiation (LR). The goals are to increase the service life of ignition systems (IS) for plasma sources to expand their technological capabilities and the quality of the resulting coatings. The tasks: to investigate the modes in which non-traditional IS stably excite an arc discharge and ensure their high service life. The methods used are analytical and experimental research methods, which were carried out using the developed new devices. The following results have been obtained. The study of arc excitation using a TGA in a system of Penning-type electrodes showed that the use of a plasma source with such an IS is advisable in processes in which reaction gases are used to form compounds with its material on the cathode surface. Otherwise, after several hundred triggering, the probability of PTD decreases to values of 10...50 %, which is explained by the cleaning of the cathode surface from various inhomogeneities. The ignition of the TGA arc using dielectric stimulators of the cathode spot (CS) expands the technological capabilities of the plasma source. Here, the arc discharge stably ignites in the pressure range from 10-2 to 10 Pa, with voltage pulses of the order of 2 kV in a magnetic field with a strength of 5.6 104 A/m and a starting pulse energy of 2 J. The design of a plasma source with a combined IS has been developed, which makes it possible to achieve the maximum reliability of the excitation of a vacuum arc. A plasma source with a combined IS has a reliability of starting the device in the pressure range of 10-2 ... 5 Pa, the presence of a magnetic field of 104 ... 105 A/m and amplitude of starting pulses of 1.5...2.0 kV close to 100%. The conditions under which the formation of vapor condensate of the plasma source cathode material on the surface of the LR input window does not occur are considered, and it is proposed to solve this problem by supplying energy to the condensation zone directly to the formed condensate layer. Conclusions. The use of non-traditional methods of excitation of a vacuum-arc discharge was substantiated and studied: using TGA and LR, a combined IS was developed, in which traditional and non-traditional methods of arc ignition are combined using the advantages of each method, parameters were found under which the IS work under study reliably and have high resource.

Keywords


Vacuum arc; Vacuum-arc discharge ignition system; excitation systems based on the transition of a glow discharge into an arc discharge

References


Zhang, Z., Zhang, L., Yuan, H., Qiu, M., Zhang, X., Liao, B., Zhang, F., Ouyang, X. Tribological Behaviors of Super-Hard TiAlN Coatings Deposited by Filtered Cathode Vacuum Arc Deposition. Materials, 2022, vol. 15, iss. 6, article no. 2236. DOI: 10.3390/ma15062236.

Ma, Y., Yang, J., Tian, X., Gong, C., Zheng, W., He, Y., Gao, Z. Microstructure, adhesion, mechanical and corrosion properties of TiN coatings deposited by high energy pulse-enhanced vacuum arc evaporation, Journal of Adhesion Science and Technology, 2020, vol. 34, iss. 10, pp. 1040-1061. DOI: 10.1080/01694243.2019.1690774.

Sysoyev, Yu. O., Shyrokyj, Yu. V., Torosy¬an E. V. Pidvyshhennya efektyvnosti zapalyuvannya vakuumno-dugovogo rozryadu v dzherelax plazmy [Increasing the ignition efficiency of vacuum-arc discharge in plasma sources] Aviacijno-kosmichna texnika i texnologiya, 2022, no. 2(178), pp. 47–54. DOI: 10.32620/aktt.2022.2.06.

Sysoev, Ju. O. Tehnologija mashynobuduvannja. Zabezpechennja efektyvnosti procesiv otrymannja vaku-umno-dugovyh pokryttiv : monografija [Mechanical en-gineering technology. Ensuring the efficiency of the pro-cesses of obtaining vacuum-arc coatings: a monograph] Kharkiv, Nac. aerokosm. un-t im. M. Je. Zhukovs'kogo «Harkiv. aviac. in-t» Publ., 2021. 320 p.

Aksenov, I. I., Belous, V. A., Smirnov, S. A., Serdjuk, V. G., Sysoev, Ju. A. (SSSR). Jelektro-provodjashhij kompozicionnyj material [Electrically conductive composite material]. Pat. USSR, no. 1285744, 1985.

Grigor'ev, A. N., Markov, V. V., Serdjuk, V. G., Sysoev, Ju. A. Shelohaev, V. I. (SSSR). Jelektro-provodjashhaja kompozicija [Electrically conductive composition]. Pat. USSR, no. 1353160, 1986.

Aksenov, I. I., Andreev, A. A., Belous V. A., Strel'nickij, V. E., Horoshih, V. M. Vakuumnaja duga: istochniki plazmy, osazhdenie pokrytij, poverhnostnoe modificirovanie [Vacuum arc: plasma sources, the deposition of coatings, surface modification]. Kiev, Naukova dumka Publ., 2012. 727 p.

Anders, A. Cathodic Arcs – From Fractal Spots to Energetic Condensation. Springer, 2008. 540 p.

Boxman, R. L., Sanders, D. M., Martin, Ph. J. (Eds.). Handbook of Vacuum Arc Science and Technology. Noyes Publications, Park Ridge, NJ, USA, 1995. 742 p.

Belevskii, V. P. Kuz'michev, A. I., Masali¬tin, E. F. Impul'snaya ionnaya obrabotka i osazhdenie tonkikh plenok i pokrytii [Pulsed ion processing and deposition of thin films and coatings]. Kiev, Obshchestvo «Znanie» Ukrainy Publ., 1991. 22 p.

Andreev, A. A., Sablev, L. P., Grigor'ev, S. N. Vakuumno-dugovye pokrytija [Vacuum-arc coating]. Kharkiv, NNC HFTI Publ., 2010. 317 p.

Nedospasov, A. V. Fizika pristenochnoi plazmy v tokamakakh [Physics of near-wall plasma in tokamaks] Uspekhi fiz. nauk, 1987, vol. 152, no. 3, pp. 479-492.

Farrel, Dzh. Initsiatsiya vakuumnoi dugi [Vacuum arc initiation]. V kn. Vakuumnye dugi, red. Dzh. Lafferti. Moscow, Mir Publ., 1982, pp. 108–152.

Baranov, M. I. Primenenie novykh gazorazryadnykh i tverdotel'nykh poluprovodnikovykh kommutatorov v sil'notochnykh tsepyakh moshchnykh vysokovol'tnykh elektrofizicheskikh ustanovok [Application of new gas-discharge and solid-state semiconductor switches in high-current circuits of powerful high-voltage electrophysical plants]. Elektrotekhnіka і elektromekhanіka, 2009, no. 1, pp. 55–58.

Aksenov, I. I., Padalka, V. G., Khoroshikh, V. M. Formirovanie potokov metallicheskoi plazmy : obzor [Formation of metal plasma streams : review]. Moscow, TsNIIatominform Publ.,1984. 83 p.

Sysoev, Yu. A. Avtomatizirovannaya sistema izmereniya temperatury dlya vakuumnykh mno-gotselevykh tekhnologicheskikh ustanovok [Automated temperature measurement system for vacuum multi-purpose process plants]. Novye tekhnologii v mashinostroenii Tr. V Mezhdunar. konf. Rybach'e, 3-8 sent. 1996. Khakov, KhAI Publ., 1996, pp. 285–287.

Volkov, V. V., Miroshkin, S. I., Shalimov, S. V., Savel'ev, A. A. Sposob polucheniya pokrytii v vakuume, ustroistvo dlya polucheniya pokrytii v vakuume, sposob izgotovleniya ustroistva dlya polucheniya pokrytii v vakuume [Vacuum Coating Method, Vacuum Coating Device, Vacuum Coating Device Manufacturing Method]. Pat. RF, no. 2176681, 2001.

Scheibe, H.-J., Dreschner, D. Preparation of diamond-like films by laser-controlled arc deposition (LASER – ARC). Thin Films Proc. of the joint 4th Int. Symp. TATF’94 and the 11th Conf. HVITF’94, Dresden, march 7–11, 1994, pp. 139–142.

Aksenov, I. I., Sysoev, Yu. A. Primenenie penningovskogo razryada dlya zazhiganiya dugi v tekhnologicheskikh istochnikakh plazmy [Application of the Penning Discharge for Arc Ignition in Technological Plasma Sources] Ionno-plazmennye ustanovki dlya tekhnologicheskikh tselei, sb. nauch. tr. Khakov, KhAI Publ., 1988, pp. 16–21.

Sysoev, Yu. A. Primenenie dielektricheskikh stimulyatorov katodnogo pyatna dlya vozbuzhdeniya dugi tleyushchim razryadom v tekhnologicheskikh istochnikakh plazmy [Application of dielectric cathode spot stimulators for excitation of an arc by a glow discharge in technological sources of plasma]. Ionno-plazmennye ustanovki dlya tekhnologicheskikh tselei, sb. nauch. tr., Khakov, KhAI Publ., 1988, pp. 22–27.

Aksenov, I. I., Sysoev, Yu. A. Khoroshikh V. M. Vakuumno-dugovoe plazmennoe ustroistvo dlya naneseniya pokrytii [Vacuum arc plasma coating machine. Pat. USSR, no. 1235449, 1986.

Sysoev, Yu. A. Tekhnologicheskii istochnik plazmy s kombinirovannoi sistemoi vozbuzhdeniya vakuumno-dugovogo razryada [Technological plasma source with a combined vacuum-arc discharge excitation system]. Voprosy atomnoi nauki i tekhniki, 2013, no. 5(87), pp. 154–157.

Sysoev, Yu. O., Kostyuk, G. I. Vakuumno-dugovy`j pry`strij dlya nanesennya pokry`ttiv [Vacuum-arc device for applying coatings]. Pat. UA, no. 107598, 2015.

Rideal, Eric K. Concepts in Catalysis. Academic Press Publ., 1968. 194 p.

Khimicheskaya entsiklopediya. V 5 t. [Chemical Encyclopedia. In 4 vol.]. Moscow, Bol'shaya rossiiskaya entsiklopediya. Publ., 1995, vol. 4, Pol-Tri Publ. 639 p.

Bykov, Yu. A., Karpukhin, S. D., Gazukina, E. I. O nekotorykh osobennostyakh struktury i svoistv metallicheskikh "tonkikh" plenok [On some features of the structure and properties of metallic "thin" films]. Metallovedenie i termicheskaya obrabotka metallov, 2000, no. 6, pp. 45–47.




DOI: https://doi.org/10.32620/aktt.2022.4.04