Requirements development for the information support manufacturing of aerospace products to ensure their quality

Ihor Bychkov, Anna Seleznova, Kateryna Maiorova, Iurii Vorobiov, Valeriy Sikulskiy

Abstract


The aim of this study is informational support of the aerospace object production at the stages of their lifecycle. The purpose is to provide the necessary parameters of the aerospace products quality, which involves providing relevant information at each stage of the lifecycle in an easy-to-understand and complete form. The task is to create the analytical standard using the example of parts of precision and unit production. The model is based on the analytical standard of parts geometry developed using CAD/CAM-systems with the subsequent expansion of the models list to transfer the necessary information to all participants of the product lifecycle. According to the analysis, significant limitations of drawing documentation for informational support of aerospace industry objects at the stage of technology development are identified. The quality characteristics of the part are grouped according to the compliance degree with its nominal (reference) value of shape and dimensions (macrogeometry and microrelief), physical and chemical properties of the material and the surface layer, technological heredity and industrial purity. It is proposed to develop their models with the CAD/CAM-systems tools based on the analytical sample of geometry. Three necessary conditions for the correct formulation of the shaping problem regarding the implementation of quality management of serial products of machine-building enterprises are established. If at least one of them is violated, it is necessary to attract additional heuristic information to reproduce the correctness of the problem. The analytical standard creation and control implementation of an example of a mill that considers the geometry of the edges are shown, as well as a comparison of the reference geometry and geometry portrait. The scientific novelty of the obtained results consists of the concept introduction of an edge as a surface that connects the working “lines of two surfaces intersection” of a part. The representation of edges in the form of surfaces, not lines, on the one hand, and the selection of these surfaces from the totality of other working surfaces of the parts, on the other hand, creates an informational basis for developing the appropriate manufacturing technologies and maintenance of these parts elements during the product operation.

Keywords


aerospace product; lifecycle; analytical standard; quality; edges; surface

References


ISO/IEC/IEEE 26531:2015. Systems and software engineering – Content management for product life-cycle, user and service management documentation. IEEE Publ., 2015. 49 p. DOI: 10.1109/IEEESTD.2015.7106441.

ASME B46.1-2019. Surface Texture (Surface Roughness, Waviness, and Lay). N. Y., American Society of Mechanical Engineers (ASME) Publ., 2019. 144 p.

Suslov, A. G., Bezjazychnyj, V. F., Panfilov, V., Ju. at al. Inzhenerija poverhnosti detail [Part surface engineering]. Moscow, Mashinostroenie Publ., 2008. 320 p.

Suslov, A. G. Kachestvo poverhnostnogo sloja detalej mashin [The quality of the surface layer of machine parts]. Moscow, Mashinostroenie Publ., 2000. 320 p.

Kohli, Rajiv., Mittal, K. L. Developments in Surface Contamination and Cleaning. India, MPS Limited, Chennai, 2017. 196 р.

Sikulskiy, V., Maiorova, K., Vorobiov, Iu., Fomichev, P., Myronova, S. Convergence technology of vehicle parts surface finishing. XIV International Scientific Conference “Transport problems 2022”, Katowice – Silesia, 29 June – 1 July 2022, Katowice, 2022, рр. 637-646.

Sikulskiy, V., Maiorova, K., Vorobiov, Iu., Boiko, M., Komisarov, O. Implementation of reengineering technology to reduce the terms of the technical preparation of manufacturing of aviation technology assemblies. Eastern-European Journal of Enterprise Technologies, 2022, vol. 3, no. 1(117), pp. 25-32. DOI: 10.15587/1729-4061.2022.258550.

Dzjuba, V. O., Marushhak, P. O. Tekhnolohichni metody zabezpechennya parametriv yakosti poverkhon' til obertannya ta yikh profilometrychnyy kontrol' [Technological methods of ensuring quality parameters of rotating bodies surfaces and their profilometric control]. Ternopil', FOP Polyanytsya V. A. Publ., 2021. 170 с.

Maiorova, K., Vorobiov, Iu., Andreev, O., Lupkin, B., Sikulskiy, V. Forming the geometric accuracy and roughness of holes when drilling aircraft structures made from polymeric composite materials. Eastern-European Journal of Enterprise Technologies, 2022, vol. 2, no. 1(116), pp. 71-80. DOI: 10.15587/1729-4061.2022.254555.

Yang, S., Li, W. Surface Quality and Finishing Technology. Surface Finishing Theory and New Technology, Springer, Berlin, Heidelberg, 2018, pp. 1-64. DOI: 10.1007/978-3-662-54133-3_1.

AS/EN 9100D. Quality Management Systems – Reqirements for Aviation, Space, and Defense Organizations. SAE International Publ., 2016. 54 p.

DSTU EN ISO 9001:2018 (EN ISO 9001:2015, IDT) Systemy upravlinnya yakistyu. Vymohy [Quality management systems. Requirements] (EN ISO 9001:2015, IDT; ISO 9001:2015, IDT). Kyiv, DP «UkrNDNCz» Publ., 2016.

Bychkov, I. V., Plankovsky, S. I., Romanov, A. A. Zhiznennyi tsikl izdeliya i ego informatsionnoe soprovozhdenie [Product life cycle and its information support]. Avtomatizatsiya i upravlenie tekhnologicheskimi protsessami i proizvodstvami – Automation and control of technological processes and production, 2014, vol. 18, no. 1(62), pp. 149-155. (In Russian).

Chichinadze, A. V., Braun, E. D., Bushe, N. A. et al. Osnovy tribologii (trenie, iznos, smazka) [Fundamentals of tribology (friction, wear, lubrication)]. Moscow, Mashinostroenie Publ., 2001. 664 p. (In Russian).

Wang, Q. Jane., Chung, Yip-Wah. Encyclopedia of Tribology. NY, Springer Publ., 2013. 4139 р. DOI: 10.1007/978-0-387-92897-5.

Shvets', A. I. Tekhnolohichna spadkovist' pry vyhotovlenni detaley mashyn [Technological heredity in the manufacture of machine parts]. X Mizhnar. nauk.-prakt. konf. molodykh uchenykh ta studentiv «Aktual'ni zadachi suchasnykh tekhnolohiy» – X International science and practice conf. young scientists and students materials "Current tasks of modern technologies", Ternopil', 24-25 lystopada, 2021, pp. 61.

Petukhov, S. V. Spravochnik mastera mashinostroitel'nogo proizvodstva [Handbook of the master of mechanical engineering production]. Moscow, Infra-Inzheneriya Publ., 2019. 352 p. (In Russian).

Zakharov, A. S., Sabel'nikov, V. I. Aviatsionnoe gidravlicheskoe oborudovanie [Aviation hydraulic equipment]. Novosibirsk, Izd-vo NGTU Publ., 2017. 406 p.

ISO 1101:2004. Geometrical product specifications (GPS) – Geometrical tolerancing – tolerances of form, orientation, location and run-out. Available at: https://www.iso.org/ru/standard/1147.html (accessed 10.02.2022)

ISO 1101:2017. Geometrical product specifications (GPS) – Geometrical tolerancing – tolerances of form, orientation, location and run-out. Available at: https://www.iso.org/ru/standard/66777.html. (accessed 12.03.2022)

Sikul's'kyy, V. T., Mayorova, K. V., Bychkov, I. V., Boyko, M. M., Komisarov, O. L. Rozrobka alhorytmiv protsesiv formoutvorennya na etapi tekhnolohichnoyi pidhotovky vyrobnytstva aviatsiynoyi tekhniky [Development of shaping process algorithms at the stage of technological preparation of the production of the aircraft]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, vol. 2(178), pp. 64-73. DOI: 10.32620/aktt.2022.2.08.

DSTU GOST 2.601:2006. Ekspluatatsiyni dokumenty [Operational documents]. Available at: http://nmcpz.ho.ua/document/biblio_01/ESKD.pdf (аccessed 12.03.2022). (In Russian).

Bychkov, I. V. Korrektnaja postanovka zadach formoobrazovanija dlja oborudovanija s ChPU [Correct formulation of shaping tasks for CNC equipment]. Tehnologicheskie sistemy – Technological systems, 2011, no. 55(2), pp. 22-28. (In Russian).




DOI: https://doi.org/10.32620/aktt.2022.4.03