Effect of evaporated cathode manufacturing technique on quality of turbine blades PVD-coatings

Володимир Сергійович Єфанов, Олексій Олександрович Педаш, Ігор Андрійович Петрик, Володимир Валерійович Клочихин, Руслан Юрійович Фетісов, Ганна Миколаївна Лаптєва

Abstract


The article considers coatings deposited on turbine blades via plasma vapor deposition (PVD) method with Ni-Cr-Al-Y cathodes obtained using powder metallurgy (PM) and electron beam remelting process (EBMR). The study analyzes the effect of cathodes manufacturing techniques on surface roughness of rotor turbine blades. Task: to examine a microstructure and chemical composition of the considered cathodes; to quantify a droplet phase of a heat-resistant coating of turbine blades subdivided into size-fractions. Methods used optical microscopy, SEM-analysis. Next results were obtained. In the microstructure of two cathodes under study, it is revealed γ-solid solution with intermetallic Ni-Cr-Al and yttrium-based phases. Simultaneously, distribution of the yttrium phase in the PM-cathode more uniform in compare with EBMR-cathode. Metallographic studies showed that yttrium phase in the structure of the PM-cathode is highly-dispersed, with sizes up to 5 microns, and due to structural and dimensional heredity received during cathode hot isostatic pressing compaction. The structure of the cathode obtained using EBMR-process is a series of the conglomerates of intermetallic phases, with more than 50 microns long, which are branched out on volume. The compliance of the chemical composition of the cathodes under study to requirements of the specifications is established. After the coating deposition on turbine blades by a PVD-method with cathodes under study, were not observed any coating delamination, and their thickness corresponded to the specifications.  With a distribution analysis of droplet phase on the turbine blade surface were established that coatings with PM-cathode have been characterized by complete absence of a 65 microns droplet phase, and has half less 25…45 microns droplet phase compared with the EBMR-cathode. Conclusions. The coating with PM-cathode has smaller droplet phase on the turbine blade surface and as a result improved their roughness and gas path surface state. The use of PM in the production of the cathodes for protective coatings provides stable performance of installation and provides long-term operation time of cathodes, compared with the EBMR-cathodes.

Keywords


ion plasma coatings; cathode; droplet phase; roughness; electron beam remelting; powder metallurgy

References


Kablov, E. N., Muboyadzhyan, S. A., Budynovskyi, S. A., Lutsenko, A. M. Ionno-plazmennye pokrytiya dlya lopatok gazoturbinnykh dvigateley [Ion-plasma coatings for the blades of gas-turbine engines], Metals, 2007, no. 5, pp. 23–34.

Kablov, E. N. Lityye lopatki gazoturbinnykh dvigateley [Cast Blades of Gas-Turbine Engines], Moscow, Moscow Institute of Steel and Alloys Publ., 2001. 632 p.

Movchan, B. A., Malashenko, I. S. Zharostoykiye pokrytiya, osazhdayemykh v vakuume [Heat-resistant coatings deposited in vacuum], Kyiv, Scientific opinion Publ., 1983. 232 p.

Tamarin, Y. Protective Coatings for Turbine Blades. ASM International Publ., 2002. 217 p.

Abraimov, N. V. Vysokotemperaturnyye materialy I pokrytiya dlya gazovykh turbin [High-Temperature Materials and Coatings for Gas Turbines], Moscow, Mashinostroenie Publ., 1993. 336 p.

Aksyonov, I. I., Aksyonov, D. S., Belous V. A. Tekhnika osazhdeniya vakuumno-dugovykh pokrytiy [Techmique of deposition of vacuum arc coatings]. Kharkov, National Scientific Center “Kharkov Institute of Physics and Technology” Publ., 2014. 280 p.

Garibov, G.S., Grits, N. M, Dobatkin, V. I. Metallurgiya granul zharoprochnykh nikelevykh splavov [Metallurgy of high-temperature nickel alloy pellets]. Light alloy technology, 2015, no. 2, pp. 34-39.

Yang, L., Xiaohao, Z., Qingxiang, W., Shujin, L. Manufacturing of Ti6Al4V powder for SLM via super-speed plasma rotating electrode process. World Congress on Powder Metallurgy, 2018, pp.1, pp. 63-70.

Logunov, A. V., Shmotin, Yu. N. Sovremennyye zharoprochnyye nikelevyye splavy dlya diskov gazovykh turbin [Contemporary Heat-Resistant Nickel Alloys for the Disks of Gas Turbines]. Moscow, Nauka i Tekhnologii Publ., 2013. 264 p.

Beresnev, A. G., Logunov, A. V., Logacheva, A. I., Kravtsov, S. G. Polucheniye mishani dlya vysokokachestvennykh pokrytiy iz intermetallidov niketya metodom metallurgii granul [Production of targets for high-quality coatings made of nickel intermetallic compounds by the method of granule metallurgy], Polet, 2008, no. 11, pp. 49–51.

Yefanov, V. S., Klochykhyn, V. V., Skrebtsov, A. A., Petryk, I. A., Pedash, O. O. Doslidzhennya vplivu tekhnologii vigotovlennya katodiv na yakist kondensatsiynikh zharotrivkikh pokriviv [Investigation of the influence of technology of production of cathodes on the quality of condensation heat-resistant coatings]. Fiz.-Khim. Mekh. Mater., 2019, no. 4, pp. 136-141.

Grechanyuk, N. I., Smashnyuk, Yu. A., Khomenko, E. V., Klochikhin, V. V., Grechanyuk, I. N. Elektronno-luchevaya vyplavka trubchatykh zagotovok iz splavov NiCrAlY, ispolzuemykh v kachestve katodov dlya ionno-plazmennogo naneseniya pokrytiy [Electron beam melting of tubular billets from NiCrAlY alloys used as cathodesfor ion-plasma coatings]. Electrometallurgy Today, 2019, no. 1, pp 17-22. DOI: 10.15407/sem2019.01.02.

Zhemanyuk, P., Klochikhin, V., Shilo, V., Pedash, A., Naumyk, V. Quality assurance of the GTE cast blades protective coating. Material Science and Technology, 2018, MS and T 2018, pp. 1536-1541. DOI: 10.7449/2018/MST_2018_1536_1541.

Yefanov, V. S., Klochykhyn, V. V., Pedash, A. A., Shilo, V. G. Vliyaniye tekhnologii izgotovleniya katodov na kachestvo pokrytiy lopatok turbiny [The effect of cathode manufacturing technology on the quality of turbine blade coatings]. Herald of Aeroenginebuilding, 2018, no. 1, pp. 132-137. DOI: 10.15588/1727-0219-2018-1-18.

Hou, S., Zhu, S., Zhang, T., Wang, F. A magnetron sputtered microcrystalline B-NiAl coating for SC superalloys. Part I. Characterization and comparison of isothermal oxidation behavior at 1100 °C with a NiCrAlY coating. Applied Surface Science, 2015, vol. 324, pp. 1-12. DOI: 10.1016/J.APSUSC.2014.10.106.




DOI: https://doi.org/10.32620/aktt.2021.6.04