TURBOJET BYPASS ENGINE WITH AFTERBURNER WITH WATER INJECTION AFTER INPUT UNIT PERFORMANCE ANALYSIS

Юрий Александрович Улитенко

Abstract


Development of perspective high-speed aircraft inseparably depends on the level of aircraft propulsion engineering as engine performances to determine aircraft capabilities as a whole. The basic requirements to engines of high-speed aircraft are increase speed and flight height. The new generation of turbojet bypass engine with afterburner each their specific thrust and a specific impulse increases, also the application of high technologies raises leads to substantial growth of the engine cost too. At the same time, existing engines design has big reserves for modernization. The system of water injection to the input at the turbojet bypass engine with afterburner is one of the accessible ways for design improvement. Those advanced engines theoretically will allow to satisfy requirements from designers of high-speed aircraft concerning to thrust and other key parameters, at the same time to secure continuity of already existing types of power-plants. The possibility of range extension of turbojet bypass engine with classical scheme afterburner operation till Mach number 3 is considered in this article. The analysis of existing developments is carried out. Impact of water injection to the input at turbojet bypass engine with afterburner on its performance is investigated. Results of calculations for the influence of water injection to reaction mass parameters on the engine duct and its thrust characteristics are proved. Received results will allow to increase thermodynamic efficiency and to expand range extension of turbojet bypass engine with afterburner provided to use materials that applied in aviation manufacture, as well as to reduce terms of development competitive engines for high-speed aircraft at the expense of purposeful search of their rational thermodynamic and is constructive-geometrical architecture.

Keywords


aircraft; unmanned aircraft; feed-space system; turbojet bypass engine with afterburner; reaction mass; power plant; water injection; engine performance; thrust.

References


Norris, Guy. Skunk Works Reveals SR-71 Successor Plan. Available at: http://aviationweek.com/technology/skunk-works-reveals-sr-71-successor-plan (accessed 01.11.2013).

Norris, Guy. Skunk Works Hints At SR-72 Demonstrator Progress. Available at: http://aviationweek.com/defense/skunk-works-hints-sr-72-demonstrator-progress (accessed 06.06.2017).

Drew, James. SpaceX Falcon 9 To Launch Next X-37B Mission. Available at: http://aviationweek.com/space/spacex-falcon-9-launch-next-x-37b-mission – (accessed 07.06.2017).

Makeich, G. S., Tjukaev, M. Ju., Chibisov, Ja. N. Proekt «Molot» giperzvukovogo bespilotnogo samoleta-razgonshhika s kombinirovannoj jekrannoj turboprjamotochnoj silovoj ustanovkoj [Project «Hammer» hypersonic pilotless aircraft responsice combined display Turboremont power plant]. Available at: http://www.mai.ru/science/trudy/published.php?ID=29075 (Accessed 12.12.2012).

Kalinichenko, D. S., Aksjonenko, A. V., Kasha-nov, A. Je. Metodicheskij podhod k proektirovaniju transportno-kosmicheskoj sistemy [Methodical approach to the design of transport and space systems]. Avìacìjno-kosmìčna tehnìka ì tehnologìâ - Aerospace technic and technology, 2012, vol. 4(91), pp. 27–33.

Tether, Tony. Statement by Dr. Tony Tether Subcommittee on Terrorism, Unconventional Threats and Capabilities, House Armed Services Committee, U.S. House of Representatives. Available at: http://www.darpa.mil/attachments/TestimonyArchived(March%2027%202003) (accessed 27.03.2003).

Burns, B. R. A. HOTOL Space Transport for the Twenty First Century. Proceedings of the Institute of Mechanical Engineers, Part G – Journal of Aerospace Engineering, 1990, vol. 204, pp. 101-110.

Hempsell, M. HOTOL's Secret Engines Revealed. Spaceflight, May 1993, vol. 35, no. 5.

European Space Agency. Skylon Assessment Report, TEC-MPC/2011/946/MF, June 2011. Available at: http://knts.tsniimash.ru/ru/src/CenterInfRes/Skylon%20Assessment%20Report.pdf (accessed 20.12.2018).

Bond, A., Varvill, R., Scott-Scott, J., Martin, T. Skylon - A Realistic Single Stage Spaceplane. Spaceflight, 2003, vol. 45, pp. 158-161.

Hempsell, M., Bond, A., Bond, R., Varvill, R. Progress on the SKYLON and SABRE Development Programme. Proc. 62nd International Astronautical Congress, Cape Town, October 2011. Paper IAC-11.B3.2.6

Ulitenko, Ju. A., Elanskij, A. V., Kravchenko, I. F. Problemy vybora shemy silovoj ustanovki dlja pervoj stupeni transportno-kosmicheskoj sistemy [Problems of selection of configuration for powerplant intended for space transportation system stage 1]. Avìacìjno-kosmìčna tehnìka ì tehnologìâ - Aerospace technic and technology, 2013, vol. 8, pp. 25–30.

Ulitenko, Ju. A., Elanskij, A. V., Kravchenko, I. F. Modernizacija turboreaktivnogo dvuhkonturnogo dvigatelja s forsazhnoj kameroj sgoranija putem vpryska vody v protochnuju chast' vozduhozabornika [Modernization of the turbofan engine with afterburner combustion by water injection into air intake duct]. Vestnik dvigatelestroenija – Bulletin engine, 2014, no. 2, pp. 122–129.

Ulitenko, Ju. A., Elanskij, A. V., Kravchenko, I. F. Rasshirenie diapazona jekspluatacii prjamotochnyh vozdushno-reaktivnyh dvigatelej putem vpryska vody na vhode v dvigatel [The expansion of the range of operation of ramjet engines by water injection at the inlet to the engine]. Systemy ozbroyennya i viys'kova tekhnika – Weapons systems and military equipment, 2016, vol. 2(46), pp. 158–163.

Merkulov, V. M. Razrabotka koncepcii sozdanija silovoj ustanovki na baze TRDD AI-222-25F dlja poletov so skorostjami 0…6 M na vysotah do 25…40 km. [The development of the concept of power plants based on turbofan AI-222-25F for flights to the soon-, 0...6 M at heights of up to 25...40 km]. Zaporozhye, Ukroboronprom Concern, State enterprise Ivchenko-Progress Publ., 2012. 10 p.

Karpachev, I. I. Opredelenie oblika prjamotochnogo vozdushno-reaktivnogo dvigatelja dlja transportno-kosmicheskoj sistemy [Definition of the ramjet engine for transport and space systems]. Zaporozhye, Ukroboronprom Concern, State enterprise Ivchenko-Progress Publ., 2016. 13 p.

Ulitenko, Ju. A., Elanskij, A. V., Kravchenko, I. F. Vliyanie vpryska vody na vkhode v pryamotochnyi vozdushno-reaktivnyi dvigatel' na ego kharakteristiki [The effect of water injection at the inlet of ramjet engine on its characteristics]. Avìacìjno-kosmìčna tehnìka ì tehnologìâ – Aerospace technic and technology, 2016, vol. 8, pp. 22–28.

Shljahtenko, S. M. Teorija vozdushno-reaktivnyh dvigatelej [Theory of jet engines]. Moscow, Mechanical Publ., 1975. 567 p.

Mehta U. Water injection pre-compressor cooling assist space access. The Aeronautical Journal, 2015, vol. 119, no. 1212, pp. 145-171.

Sohn, R.L. Theoretical and Experimental Studies of Pre-Compressor Evapourative Cooling for Applicationto the Turbojet Engine in High Altitude Supersonic Flight. Propulsion Research Corporation, 1956, WADC-TR-56-477, August, AD097262.

King, P.G., Nygaard, R. C. Mechanical Operating Experience with Three J57-P-11 Turbojet Enging during a Pre-Compressor Spray Cooling Test in an Altitude Test Chamber. AEDC-TN-57-70, February 1958, AD150076.

Neely, J., Ward T. R. Maximum Power Performance of a J57 and a YJ75 Turbojet engine with Pre-Compressor Water Evapourative Cooling. AEDC-TR-58-18, February 1959, AD-304817.

King, L. D. Design and Testing of a Pre-Compressor Cooling System for a High Speed Aircraft. Chase Vought Corporation, Vought Aeronautics Division, May 1961, AD324250.

Malahov, A. V. Issledovanie metodami chislennogo modelirovanija forsirovanija sudovogo gazoturbinnogo dvigatelja vpryskom vody. Avtoref. diss. kand. tekhn. nauk [Study by numerical simulations the forcing of ship gas turbine engine water injection. Avtoref. diss. cand. tech. sci.]. Nizhny Novgorod, Volga state Academy of water transport Publ., 1994. 18 p.

Skvorcov, A. V. Povyshenie parametrov gazoturbinnyh ustanovok putjom vpryska vody v protochnuju chast' i optimizacii rabochego processa v kompressore. Diss. kand. tekhn. nauk [Improving the parameters of gas turbines by water injection to the flow path and optimize the workflow in compressor. Cand. tech. sci. diss.]. St. Petersburg, 2010. 173 p.

Din', T'en Zung. Vlijanie vpryska vody v kompressor na harakteristiki gazoturbinnyh jenergeticheskih ustanovok. Avtoref. Diss. kand. tekhn. nauk [The influence of water injection into the compressor characteristics in gas turbine power plants. Avtoref. diss. cand. tech. sci.]. Moscow, Moscow aviation Institute Publ., 2013. 23 p.

Hamza, Nasir Hamid Hamza. Optimizacija vpryska vody v trakt protochnoj chasti gazoturbinnoj ustanovki, rabotajushhej v uslovijah Iraka. Diss. kand. tekhn. nauk [Optimization of water injection into the tract of the flow part of gas-turbine installations operating under conditions of Iraq. Cand. tech. sci. diss.]. Novocherkassk, 2015. 152 p.

Il'ichev, Ya. T. Termodinamicheskii raschet vozdushno-reaktivnykh dvigatelei [Thermodynamic calculation of air-jet engines]. Moscow, CIAM Publ., 1975. 126 p.

Ulitenko, Ju. A., Elanskij, A. V., Loginov, V. V. Obosnovanie vybora algoritmov sistemy avtomaticheskogo upravleniya pryamotochnym vozdushno-reaktivnym dvigatelem [The rationale for the selection of algorithms of the automatic control system ramjet engine]. Vestnik dvigatelestroenija – Bulletin engine, 2016, no. 2, pp. 49–55.

Guide to Meteorological Instruments and Methods of Observation. Geneva, World Meteorological Organization, 2008. 678 p.




DOI: https://doi.org/10.32620/aktt.2019.1.03