APPLICATION OF NEURAL NETWORKS IN PROBLEM OF PREDICTING THE TECHNICAL CONDITION OF AVIATION ENGINE TV3-117 IN FLIGHT MODES
Abstract
Keywords
Full Text:
PDF (Українська)References
Pashayev, A. M., Askerov, D. D., Ardil, C., Sadiqov, R. A., Abdullayev, P. S. Complex Condition Monitoring System of Aircraft Gas Turbine Engine. International Journal of Aerospace and Mechanical Engineering, 2007, vol. 1, no. 11, pp. 689–695.
Legkonogih, D. S. Primenenie neirosetevih tehnologiy v sistemah diagnostiki aviatsionnih silovih ustanovok [Application of neural network technologies in aircraft power plant diagnostic systems]. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 2012, vol. 14, no. 4(2), pp. 639–643.
Ntantis, E. L., Botsaris, P. N. Diagnostic Methods for an Aircraft Engine Performance. Journal of Engineering Science and Technology, 2015, no. 8(4), pp. 64–72.
Mashoshin, O. F., Zontov, G. S. Diagnostika aviatsyonnogo gazoturbinnogo dvigatelya po nalichiyu vrednyh primesey v sisteme konditsionirovaniya vozduha [Diagnosis of an aviation gas turbine engine for the presence of harmful impurities in the air conditioning system]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, 2014, no. 205, pp. 44–48.
Mashoshin, O. F. Otsenka diagnosticheskoy tsennosti informatsiy pri reshenii zadach v oblasti ekspluatatsiy aviatsionnoy tehniki [Assessment of the diagnostic value of information in solving problems in the field of the operation of aircraft]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, 2015, no. 219, pp. 53–56.
Mashoshin, O. F., Karmyzov, M. V., Makarov V. P. Algoritm otsenki vibrosostoyaniya gazoturbinnih dvigatelei s ispolzovaniem elementov teoriy matematicheskoi statistiki [Algorithm for estimating the vibration state of gas turbine engines using elements of the theory of mathematical statistics]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, 2008, no. 135, pp. 28–33.
Gernakov, S. V., Vasiliev,V. I., Musluhov I. I. Bortovie algoritmi kontrolya parametrov GTD na osnove tehnologii neironnih setei [On-board algorithms for monitoring GTE parameters based on neural network technology]. Bulletin of the USATU, 2009, vol. 12, no. 1 (30), pp. 61–74.
Gernakov, S. V. Trend-analiz parametrov aviatsionnogo GTD na osnove tehnologii neironnih setei [Trend analysis of aviation GTE parameters based on neural network technology]. Bulletin of the USATU, 2011, vol. 15, no. 4 (44), pp. 25–32.
Gernakov, S. V., Ivanova, N. S., Ravilov, R. F. Kontrol i diagnostika tehnicheskogo sostoyaniya maslyanoi sistemi GTD s ispolzovaniem tehnologii neironnih setei [Control and diagnostics of the technical state of the GTE oil system using the technology of neural networks]. Bulletin of the USATU, 2012, vol. 16, no. 2 (47), pp. 210–220.
Mashoshin, O. F. Diagnostika aviatsionnoy tehniki [Diagnostics of aircraft], Moscow, Moscow State Technical University of Civil Aviation Publ., 2007, pp. 104–122.
Kiakojoori, S., Khorasani, K. Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis. Neural Computing & Applications, 2016, vol. 27, no. 8, pp. 2157–2192.
Afanasiev, V. N., Yuzbashev, P. N. Analiz vremennih ryadov i prognozirovanie [Time series analysis and forecasting]. Moscow, Finance and Statistics Publ., 2001. 288 p.
Nazarov, A. V., Loskutov, A. I. Neirosetevie algoritmy prognozirovaniya i optimizatsyi sistem [Neural network algorithms for forecasting and optimization of systems]. St. Petersburg, Science and technology Publ., 2003. 384 p.
Arhangelskiy, V. I., Bogaenko, I. N., Graboskiy, G. G. and etc. Neironnie seti v sistemah avtomatizatsyi [Neural networks in automation systems], Kiev, Technique Publ., 1999. 364 p.
Galushkin, A. I., Vasilev, V. I., Illyasov, B. G., Gernakov, S. V. and etc. Neirokomputeri v aviatsyi: monografia [Neurocomputers in aviation: monograph]. Moscow, Radio engineering Publ., 2004. 496 p.
DOI: https://doi.org/10.32620/aktt.2018.3.04