Experimental investigation of influence of thermal pulse deburring of gte turbine blades on the tendency to high-temperature gas corrosion

Сергей Игоревич Планковский, Евгений Сергеевич Палазюк, Вадим Олегович Гарин, Юрий Вениаминович Дьяченко

Abstract


One of the most important parts of gas turbine engines (GTE) are turbine blades, because from their operational characteristics depend the maximum gas temperature in a turbine, its reliability and service life, specific power and economy of an engine. Different mechanical damages, cracks, traces of general corrosion, changing their working section, are unacceptable on blades. Analysis of main causes of the parts destruction in GTE flow section shows that in most cases formation of shearing distortions and cracks occurs on blades edges in the surface layer of material. The main reason for appearance of these defects are sulphide-oxide and high-temperature gas corrosion. The basic development tendencies of blades reliability increasing show, that together with the development of new heat-resistant alloys another possible way to prevent the destruction of blade material is increasing of blade manufacturing quality. The final shape of turbine blades is often achieved by machining, which leads to formation of burrs on the edges. Thermal pulse deburring has a large number of technological advantages and is the most promising method for finishing treatment of the surfaces and edges of GTE blades. However, despite the numerous positive examples of the application of laser treatment of blade surfaces in order to increase the corrosion resistance, the mechanism of phase and structural transformations, occurring in the surface layers of heat-resistant steels and alloys of different compositions, is still not fully understood. To estimate the effect of thermal pulse deburring of gas turbine blades on their operational characteristics, accelerated tests of blade specimens on the tendency to high-temperature gas corrosion have been carried out. The tests consist of sequential chemical etching in electrolyte, electrochemical treatment and high-temperature treatment in aggressive gases. These tests allow to obtain the same corrosion layer on blades surfaces, like after real operation. Also influence of laser deburring on corrosion resistance was estimated in parallel. The experimental study was carried out on the example of treatment of GTE nozzle blades made from a heat-resistant alloy on a nickel basis ZhS26-VI. Specimens were obtained by cutting two new blades into small parts by hydroabrasive cutting method to ensure that there is no thermal impact on the material being processed and no burn-out of the alloying elements. Obtained specimens of GTE blades after the cutting have been undergone by additional machining to obtain burrs at the edges, which were removed by thermal pulse and laser deburring methods. Investigation of the surface layer state of specimens after accelerated tests for high-temperature gas corrosion has been carried out by means of microscopic analysis. For this purpose, microslices of specimens have been prepared. Using a comparative analysis of the corrosion layer thickness after the tests, it was shown that there is no influence of thermal pulse and laser deburring methods on the tendency to high-temperature gas corrosion.


Keywords


GTE; blade; high-temperature gas corrosion; heat-resistant alloy; burr; thermal pulse deburring; accelerated tests; corrosion layer

References


Nikitin, V. I. Korroziya i zashchita lopatok gazovyh turbin [Corrosion and protection of gas turbine blades]. Leningrad, Mashinostroenie Publ., 1987. 272 p.

El-Sayed, A. F. Aircraft Propulsion and Gas Turbine Engines, Second Edition. Boca Raton, CRC Press, 2017. 1476 p.

Karpov, Ye. N., Tarasevich, I. I., Motriy, N. N. Obobschenie rezultatov issledovaniy prichin vysokotemperaturnoy korrozii [Summary of research results of the high-temperature corrosion causes]. Nadezhnost i dolgovechnost aviatsionnyh gazoturbinnyh dvigateley : sb. nauch. tr. Kiev, KIIGA, 1979, pp. 115–122.

Adamczuk, R., Buske, C., Roehle, I., Hennecke, C., Dinkelacker, F., Seume, J. R. Impact of defects and damage in aircraft engines on the exhaust jet. Proceedings of ASME Turbo Expo 2013. San Antonio, Texas, USA, 2013, pp. 1–12.

Nikitin, V. I. Vliyanie temperatury na sulfidno-oksidnuyu korroziyu materiala lopatok gazovyh turbin [Temperature influence on sulfide-oxide corrosion of gas turbine blade material]. Teploenergetika, 1984, no 1, pp. 30–33.

Kolagar, A. M., Tabrizi, N., Cheraghzadeh, M., Shahriari M. S. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Studies in Engineering Failure Analysis, 2017, Vol. 8, pp. 61–68.

Gecov, L. B. Korroziya materialov i ee vliyanie na prochnost energoustanovok [Corrosion of materials and its effect on the strength of power plants]. Saint Petersburg, SPGPU Publ., 2005. 324 p.

Salehnasab, B., Poursaeidi, E., Mortazavi, S. A., Farokhian, G. H. Hot corrosion failure in the first stage nozzle of a gas turbine engine. Engineering Failure Analysis, 2016, Vol. 60, pp. 316–325.

Rozenfeld, I. L. Korroziya i zashchita metallov [Corrosion and protection of metals]. Moscow, Metallurgiya Publ., 1970. 448 p.

Dubrovskiy, S. S. Lokalizatsiya krytichnyh zon poshkodzhennya rotornyh detaley gazoturbinnyh dviguniv [Localization of critical zones of rotor parts damage of gas turbine engines]. Visnyk Natsionalnogo aviatsiynogo universytetu, 2009, no. 3, pp. 6–10.

Inozemtsev, A. A., Nihamkin, N. A., Sandrackiy, V. L. Dinamika i prochnost aviatsionnyh dvigateley i energeticheskih ustanovok [Dynamics and strength of aircraft engines and power plants] Moscow, Mashinostroenie Publ, 2008. 204 p.

Demin, F. I., Pronichev, N. D., Shytarev, I. L. Tehnologiya izgotovleniya osnovnyh detaley gazoturbinnyh dvigateley: Uchebnoe posobie [Technology of manufacturing of the main gas turbine engines parts: Educational aid]. Federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniya «Samarskiy gosudarstvenniy aerokosmicheskiy universitet imeni akademika S. P. Koroleva», Samara, 2012. 324 p.

Mahnaev, V. A., Kogan, Ya. A., Savinyh, V. P. Bezdovodochnaya obrabotka vysokotochnyh korpusnyh detaley iz tsvetnyh splavov na mnogooperatsionnyh stankah s ChPU [Non-debugging treatment of high-precision base details made from non-ferrous alloys on multi-operational CNC machines]. Aviatsionnaya promyshlennost, 1981, no. 1, pp. 30–31.

Losev, A. V. Povyshenie ehffektivnosti zachistki detalej pnevmaticheskih i gidrotoplivnyh sistem pri ispol'zovanii termoimpul'snogo metoda. Dis. … kand. tehn. nauk [Efficiency improvement of parts deburring of pneumatic and hydro-fuel systems using the thermal pulse method]. Kharkov, 1995. 210 p.

Bozhko, V. P. Osnovy tehnologii zachistki detalej aviatsionnogo proizvodstva vysokotemperaturnymi gazovymi impul'sami. Dis. … doct. tehn. nauk [Fundamentals of deburring technology of aviation production parts with high-temperature gas impulses]. Kharkov, 1993. 314 p.

Plankovskiy, S. I., Losev, A. V., Shipul, O. V., Borisova, O. S. Sovremennoe sostoyanie i perspektivy razvitiya tehnologij finishnoj otdelki precizionnyh detalej letatel'nyh apparatov [Current state and development perspectives of finishing technologies of aircraft precision parts]. Aviacionno-kosmicheskaya tehnika i tehnologiya, 2010, no. 2(69), pp. 39–47.

Shlyakova, Ye. V. Povyshenie stojkosti k korrozii i iznosu poverhnostej izdelij iz zharoprochnyh stalej i splavov metodom lazernoj obrabotki. Dis. … kand. tehn. nauk [Increase of resistance to corrosion and wear of products surfaces made from heat-resistant steels and alloys by laser treatment]. Omsk, 2009. 150 p.

Zhemanyuk, P. D. Struktura i svojstva lityh lopatok aviacionnyh dvigatelej iz zharoprochnogo nikelevogo splava ZhS26-VI posle goryachego izostaticheskogo pressovaniya [Structure and properties of cast blades of aircraft engines made from heat-resistant nickel alloy ZhS26-VI after hot isostatic pressing] / Vestnik dvigatelestroeniya, 2015, no. 1, pp. 139–146.

Gishvarov, A. S., Davydov M. N. Metody ispytanij na vysokotemperaturnuyu gazovuyu korroziyu [Test methods for high-temperature gas corrosion]. Vestnik UGATU, 2014, no. 1(67), pp. 45–54.

Davydov, M. N. Metod uskorennyh ispytanij na vysokotemperaturnuyu gazovuyu korroziyu soplovyh lopatok turbin GTD. Dis. … kand. tehn. nauk [Method of accelerated testing for high-temperature gas corrosion of turbine nozzle blades of GTE]. Ufa, 2006. 147 p.




DOI: https://doi.org/10.32620/aktt.2018.2.01