OBJECT BASED POSTPROCESSING METHOD FOR CROP CLASSIFICATION MAPS ACCORDING TO EACH CLASS SPECIFICITY
Abstract
Keywords
Full Text:
PDF (Українська)References
Huang, Xin, et al. New postprocessing methods for remote sensing image classification: A systematic study. IEEE Transactions on Geoscience and Remote Sensing, vol. 52, iss. 11, 2014, pp. 7140-7159.
Kolotii, A., et al. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, iss.7, 2015, pp. 39-44.
Gallego, Francisco Javier, et al. Efficiency assessment of using satellite data for crop area estimation in Ukraine. International Journal of Applied Earth Observation and Geoinformation, vol. 29, 2014, pp. 22-30.
Kogan, Felix, et al. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. International Journal of Applied Earth Observation and Geoinformation, vol. 23, 2013, pp. 192-203.
Kussul, Nataliia, et al. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, vol. 14, iss. 5, 2017, pp. 778-782.
Shelestov, Andrii, et al. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Frontiers in Earth Science, vol. 5, 2017, pp. 17.
Kussul, Nataliia, et al. Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, iss. 6, 2016, pp. 2500-2508.
Waldner, François, et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. International Journal of Remote Sensing, vol. 37, iss. 14, 2016, pp. 3196-3231.
Lavrenyuk, Mykola. Metod ob"yektnoyi fil'tratsiyi kart klasyfikatsiyi zemnoho pokryvu na osnovi morfolohichnykh oznak [Method of object filtering maps of the classification of the earth's surface on the basis of morphological features]. Induktyvne modelyuvannya skladnykh system, 2017, no. 9 (unpublished).
Löw, Fabian, Christopher Conrad, and Ulrich Michel. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 108, 2015, pp. 191-204.
Kussul, N., Shelestov, A., Basarab, R., Skakun, S., Kussul, O., Lavreniuk, M. Geospatial Intelligence and Data Fusion Techniques for Sustainable Development Problems. In ICTERI, 2015, pp. 196–203.
Kussul, N., Lavreniuk, N., Shelestov, A., Yailymov, B., Butko, I. Land Cover Changes Analysis Based on Deep Machine Learning Technique. Jour. of Automation and Information Sciences, 2016, vol. 48, no. 5, pp. 42–54.
Kussul, N., Shelestov, A., Lavreniuk, M., Butko, I., Skakun, S. Deep learning approach for large scale land cover mapping based on remote sensing data fusion. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 198-201.
Kussul, N., Lavreniuk, M., Shelestov, A., Yailymov, B. Along the season crop classification in Ukraine based on time series of optical and SAR images using ensemble of neural network classifiers. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 7145-7148.
LUCAS 2009, Land Use / Cover Area Frame Survey. Available at: http://ec.europa.eu/eurostat/documents/205002/208938/LUCAS2009_C1-Instructions_Revised20130925.pdf/ (аccessed 12.06.2017).
Lavreniuk, Mykola, et al. Large-scale classification of land cover using retrospective satellite data. Cybernetics and Systems Analysis, vol. 52, iss. 1, 2016, pp. 127-138.
Lavreniuk, M. S. Metod detektuvannya mezh na karti klasyfikatsiyi na osnovi modyfikovanoho alhorytmu Sobelya [Borders detection method based on a modified sobel algorithm for crop classification maps]. Radioelektronni i komp'uterni sistemi - Radioelectronic and computer systems, 2017, no. 4 (84), pp. 17–27.
Kesheng, Wu., Ekow, Otoo., Shoshani, Arie. Optimizing connected component labeling algorithms. Lawrence Berkeley National Laboratory. Available at: https://escholarship.org/uc/item/7jg5d1zn (аccessed 12.08.2017).
Chrystal, George. On the problem to construct the minimum circle enclosing n given points in the plane. Proceedings of the Edinburgh Mathematical Society, 1885, vol. 3, pp. 30-33.
Rocha, Lourena, Luiz Velho, and Paulo Cezar Pinto Carvalho. "Image moments-based structuring and tracking of objects. Computer Graphics and Image Processing, 2002. Proceedings. XV Brazilian Symposium on. IEEE. Available at: http://
ieeexplore.ieee.org/document/1167130/ (аccessed 15.07.2017). DOI: 10.1109/SIBGRA.2002.1167130
Stojmenovic, Milos., Nayak, Amiya. Direct ellipse fitting and measuring based on shape boundaries. Advances in Image and Video Technology, 2007, pp. 221-235.
Vermeer, Martin. "Statistical uncertainty and error propagation. Available at: https://users.aalto.fi/
~mvermeer/uncertainty.pdf (аccessed 22.05.2017).
Ramer, Urs. An iterative procedure for the polygonal approximation of plane curves. Computer graphics and image processing, 1972, vol. 1, iss. 3, pp. 244-256.
Douglas, David H., Peucker, Thomas K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, vol. 10, iss. 2, pp. 112-122.
Beucher, Serge, and Christian Lantuéjoul. "Use of watersheds in contour detection. Workshop on image processing. Available at: http://cmm.ensmp.fr/~beucher/publi/watershed.pdf (аccessed 11.04.2017).
Congalton, Russell G. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 1991, vol. 37, iss. 1, pp. 35-46.
Foody, Giles M. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment, 2009, vol. 113, iss. 8, pp. 1658-1663.
Foody, Giles M. Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 2004, vol. 70, iss. 5, pp. 627-633.
Skakun, Sergii, et al. Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, vol. 9, iss. 8, pp. 3712-3719.
Kussul, Nataliia, et al. Regional scale crop mapping using multi-temporal satellite imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, vol. 40, iss. 7, pp. 45–52. DOI:10.5194/isprsarchives-XL-7-W3-45-2015.
DOI: https://doi.org/10.32620/aktt.2018.1.10